Project

Dates

- Classes end 12/13, we dnesday
- Final homework due 12/12, tuesday
- Project due 12/8 (MIT restriction)

Options

- Reading project
 - Read some **hard** papers
 - Write about them *more clearly* than original
 - graded on delta
 - best source: STOC/FOCS/SODA
- Implementation project
 - read some randomized algorithms papers,
 - implement
 - develop interesting test sets
 - identify hard cases
 - devise heuristics to improve
- In your work:
 - use a randomized algorithm in your research;
 - write about it

\mathbf{MST}

Review Background

- kruskal
- boruvka
- verification

sampling theorem:

- Heavy edges
- pick F with probability p

• get n/p *F*-heavy edges

Recursive algorithm without boruvka:

$$T(m,n) = T(m/2,n) + O(m) + T(2n,n) = O(m+n\log n)$$

(sloppy on expectation on T(2n,n)) Recursive algorithm with 3 boruvka steps:

$$T(m,n) = T(m/2, n/8) + c_1(m+n) + T(n/4, n/8)$$

$$\leq c(m/2 + n/8) + c_1(m+n) + c(n/4 + n/8)$$

$$= (c/2 + c_1)m + (c/8 + c_1 + c/4 + c/8)n$$

$$= (c/2 + c_1)(m+n)$$

so set $c = 2c_1$ (not sloppy expectation). Notes:

- Chazelle $m \log \alpha(m, n)$ via relaxed heap
- Ramachandran optimal deterministic algorithm (runtime unknown)
- open questions.