
Geometry

Model

• RAM

• operations on reals, including sqrts.

• (why OK)

• line segment intersections

• DISCRETE randomization

Applications:

• graphics of course

• any domain where few variables, many constraints

Point location in line arrangements

setup:

• n lines in plane

• gives O(n2) convex regions

• goal: given point, find containing region.

• for convenience, use triangulated T (L)

• triangulation introduces O(n2) segments (planar graph)

• assume all inside a bounding triangle

how about a binary space partition?

• single line splits input into two groups of n-1 rays

• search time (depth) could be n

A good algorithm:

• choose r random lines R, triangulate

• inside each triangle, some lines.

• good if each triangle has only an(log r)/r lines in it

• will show good with prob. 1/2

• recurse in each triangle—halves lines

1

Lookup method: O(log n) time.
Proof of good

• As with cut sampling, consider individual “problem” events, show unlikely

• Let ∆ be all triplets of L-intersections

• when δ ∈ ∆ is bad:

– let I(δ) be number of lines hitting δ

– let G(δ) be lines that induce δ (at most 6)

– for bad δ, must have all lines of G(δ) in R (call this B1(δ)), no lines of I(δ) in R
(call this B2(δ).

• bound prob. of bad δ:

– we know
Pr[δ] ≤ Pr[B1(δ)] Pr[B2(δ) | B1(δ)]

(why not equal?)

– Given B1(δ), still need r − |G(δ)| ≥ r − 6 ≥ r/2 drawings (assuming r > 12)

– prob. none picked is at most

(1− |I(δ)|
n

)r/2 ≤ e−rI(δ)/2n

– Only care if I(δ) > an(log r)/r—large triplets

– Pr[B2(δ) | B1(δ)] ≤ r−a/2 for large triplet

• prob. some bad at most

r−a/2
∑
δ

Pr[B1(δ)]

• sum is expected number of large triplets.

– at most r2 points in sample

– at most (r2)3 = r6 triplets in sample

– expectation at most r6

– choose a > 12, deduce result.

Construction time:

• Recurrence

T (n) ≤ n2 + cr2T (an
log r

r
) = O(n2+ε(r))

• ε decreasing with r

• by choosing large r, arbitrarily close to O(n2)

2

Randomized incremental construction

Special sampling idea:

• Sample all except one item

• hope final addition makes small or no change

Method:

• process items in order

• average case analysis

• randomize order to achieve average case

• e.g. binary tree for sorting

Randomized incremental sorting

• Less data structure than binary tree

• repeated insert of item into so-far-sorted

• each yet-uninserted item points to “destination interval” in current partition

• bidirectional pointers (interval points back to all contained items)

• when insert x to I,

– splits interval I

– must update all I-pointers to one of two new intervals

– finding easy easy (since back pointers)

– work proportional to size of I

• If analyze insertions, bigger intervals more likely to update; lots of quadratic terms.

Backwards analysis

• run algorithm backwards

• at each step, choose random element to un-insert

• find expected work

• works because:

– condition on what first i objects are

– which is ith is random

– discover didn’t actually matter what first i items are.

3

Apply analysis to Sorting:

• at step i, delete random of i sorted elements

• un-update pointers in adjacent intervals

• each pointer has 2/i chance of being un-updated

• expected work O(n/i).

• true whichever are i elements.

• sum over i, get O(n log n)

• compare to trouble analyzing insertion

– large intervals more likely to get new insertion

– for some prefixes, must do n− i updates at step i.

4

