Randomized incremental construction

Special sampling idea:

- Sample all except one item
- hope final addition makes small or no change

Method:

- process items in order
- average case analysis
- randomize order to achieve average case
- e.g. binary tree for sorting

Backwards analysis

- compute expected time to insert $S_{i-1} \rightarrow S_{i}$
- backwards: time to delete $S_{i} \rightarrow S_{i-1}$
- conditions on S_{i}
- but generally analysis doesn't care what S_{i} is.

Convex Hulls

Define

- assume no 3 points on straight line.
- output:
- points and edges on hull
- in counterclockwise order
- can leave out edges by hacking implementation
$\Omega(n \log n)$ lower bound via sorting algorithm (RIC):
- random order p_{i}
- insert one at a time (to get S_{i})
- update $\operatorname{conv}\left(S_{i-1}\right) \rightarrow \operatorname{conv}\left(S_{i}\right)$
- new point stretches convex hull
- remove new non-hull points
- revise hull structure

Data structure:

- point p_{0} inside hull (how find?)
- for each p, edge of $\operatorname{conv}\left(S_{i}\right)$ hit by $\overrightarrow{p_{0} p}$
- say p cuts this edge
- To update p_{i} in $\operatorname{conv}\left(S_{i-1}\right)$:
- if p_{i} inside, discard
- delete new non hull vertices and edges
- 2 vertices v_{1}, v_{2} of $\operatorname{conv}\left(S_{i-1}\right)$ become p_{i}-neighbors
- other vertices unchanged.
- To implement:
- detect changes by moving out from edge cut by $\overrightarrow{p_{0} p}$.
- for each hull edge deleted, must update cut-pointers to $p_{i} \vec{v}_{1}$ or $p_{i} \vec{v}_{2}$

Runtime analysis

- deletion cost of edges:
- charge to creation cost
- 2 edges created per step
- total work $O(n)$
- pointer update cost
- proportional to number of pointers crossing a deleted cut edge
- BACKWARDS analysis
* run backwards
* delete random point of $S_{i}\left(\right.$ not $\left.\operatorname{conv}\left(S_{i}\right)\right)$ to get S_{i-1}
* same number of pointers updated
* expected number $O(n / i)$
- what $\operatorname{Pr}[$ update $p]$?
- $\operatorname{Pr}[$ delete cut edge of $p]$
- $\operatorname{Pr}[$ delete endpoint edge of $p]$
- $2 / i$
* deduce $O(n \log n)$ runtime
- Book studies 3d convex hull using same idea, time $O(n \log n)$, also gets voronoi diagram and Delauney triangulations.

Trapezoidal decomposition:

Motivation:

- manipulate/analayze a collection of segments
- e.g. detect segment intersections
- e.g., point location data structure
- Draw verticals at all points
- binary search for slab
- binary search inside slab
- problem: $O\left(n^{2}\right)$ space

Definition.

- draw altitudes from each intersection till hit a segment.
- trapezoid graph is planar (no crossing edges)
- each trapezoid is a face
- show a face.
- one face may have many vertices (from altitudes that hit the outside of the face)
- max vertex degree is 6 (assuming nondegeneracy)
- so total space $O(n+k)$ for k intersections.
- number of faces also $O(n+k)$ (each face needs one edge)
- (or use Euler's theorem: $n_{v}-n_{e}+n_{f} \geq 2$)
- standard clockwise pointer representation lets you walk around a face

Randomized incremental construction:

- to insert segment, start at left endpoint
- draw altitudes from left end (splits a trapezoid)
- traverse segment to right endpoint, adding altitudes whenever intersect
- traverse again, erasing (half of) altitudes cut by segment

Implementation

- clockwise ordering of neighbors allows traversal of a face in time proportional to number of vertices
- for each face, keep a (bidirectional) pointer to all not-yet-inserted left-endpoints in face
- to insert line, start at face containing left endpoint
- traverse face to see where leave it
- create intersection,
- update face (new altitude splits in half)
- update left-end pointers
- segment cuts some altititudes: destroy half
- removing altitude merges faces
- update left-end pointers

Analysis:

- Overall, update left-end-pointers in faces neighboring new line
- time to insert s is

$$
\sum_{f \in F(s)}(n(f)+\ell(f))
$$

where

- $F(s)$ is faces s bounds after insertion
- $n(f)$ is number of vertices in face f
- $\ell(f)$ is number of left-ends in f.
- So if S_{i} is first i segmenets inserted, expected work of insertion i is

$$
\frac{1}{i} \sum_{s \in S_{i}} \sum_{f \in F(s)}(n(f)+\ell(f))
$$

- Note each f appears at most 4 times in sum
- so $O\left(\frac{1}{i} \sum_{f}(n(f)+\ell(f))\right)$.
- Bound endpoint contribution:
$-\operatorname{note} \sum l(f)=n-i$
- so contributes n / i
- so total $O(n \log n)$
- Bound intersection contribution
$-\sum n(f)$ is $O\left(k_{i}+i\right)$ if k_{i} intersections
- so cost is $E\left[k_{i}\right]$
- intersection present if both segments in first i insertions
- so expected cost is $O\left(\left(i^{2} / n^{2}\right) k\right)$
- so cost contribution $\left(i / n^{2}\right) k$
- sum over i, get $O(k)$
- note: adding to RIC, assumption that first i items are random.
- Total: $O(n \log n+k)$

