Trapezoidal decomposition:

Motivation:

- manipulate/analayze a collection of segments
- e.g. detect segment intersections
- e.g., point location data structure
- Draw verticals at all points
- binary search for slab
- binary search inside slab
- problem: $O\left(n^{2}\right)$ space

Definition.

- draw altitudes from each intersection till hit a segment.
- trapezoid graph is planar (no crossing edges)
- each trapezoid is a face
- show a face.
- one face may have many vertices (from altitudes that hit the outside of the face)
- max vertex degree is 6 (assuming nondegeneracy)
- so total space $O(n+k)$ for k intersections.
- number of faces also $O(n+k)$ (each face needs one edge)
- (or use Euler's theorem: $n_{v}-n_{e}+n_{f} \geq 2$)
- standard clockwise pointer representation lets you walk around a face

Randomized incremental construction:

- to insert segment, start at left endpoint
- draw altitudes from left end (splits a trapezoid)
- traverse segment to right endpoint, adding altitudes whenever intersect
- traverse again, erasing (half of) altitudes cut by segment

Implementation

- clockwise ordering of neighbors allows traversal of a face in time proportional to number of vertices
- for each face, keep a (bidirectional) pointer to all not-yet-inserted left-endpoints in face
- to insert line, start at face containing left endpoint
- traverse face to see where leave it
- create intersection,
- update face (new altitude splits in half)
- update left-end pointers
- segment cuts some altititudes: destroy half
- removing altitude merges faces
- update left-end pointers

Analysis:

- Overall, update left-end-pointers in faces neighboring new line
- time to insert s is

$$
\sum_{f \in F(s)}(n(f)+\ell(f))
$$

where

- $F(s)$ is faces s bounds after insertion
- $n(f)$ is number of vertices in face f
- $\ell(f)$ is number of left-ends in f.
- So if S_{i} is first i segmenets inserted, expected work of insertion i is

$$
\frac{1}{i} \sum_{s \in S_{i}} \sum_{f \in F(s)}(n(f)+\ell(f))
$$

- Note each f appears at most 4 times in sum
- so $O\left(\frac{1}{i} \sum_{f}(n(f)+\ell(f))\right)$.
- Bound endpoint contribution:
$-\operatorname{note} \sum l(f)=n-i$
- so contributes n / i
- so total $O(n \log n)$
- Bound intersection contribution
$-\sum n(f)$ is $O\left(k_{i}+i\right)$ if k_{i} intersections
- so cost is $E\left[k_{i}\right]$
- intersection present if both segments in first i insertions
- so expected cost is $O\left(\left(i^{2} / n^{2}\right) k\right)$
- so cost contribution $\left(i / n^{2}\right) k$
- sum over i, get $O(k)$
- note: adding to RIC, assumption that first i items are random.
- Total: $O(n \log n+k)$

Search structure

Goal: apply binary search in slabs, without n^{2} space

- Idea: trapezoidal decomp is "important" part of vertical lines
- problem: slab search no longer well defined
- but we show ok

The structure:

- A kind of search tree
- " x nodes" test against an altitude
- " y nodes" test against a segment
- leaves are trapezoids
- each node has two children
- so works like a search tree
- bf But node may have many parents
- sharing descendants saves space.

Inserting an edge contained in a trapezoid

- update trapezoids
- build a 4-node subtree to replace leaf

Inserting an edge that crosses trapezoids

- sequence of traps Δ_{i}
- if Δ_{0} has left endpoint, replace leaf with x-node for left endpoint and y-node for new segment
- Same for last Δ
- middle Δ :
- cut off pieces form new trapezoids (leaves)
- replace each cut trapezoid with a y-node for new segment
- two children of y-node point to appropriate traps
- note trap can have several incoming nodes

Proof of correctness:

- Claim after each insert, valid search for current segments
- consider last insertion
- search gets to correct place before insertion
- new nodes continue search to correct place

Search time analysis

- depth increases by one for new trapezoids "below" new segment
- RIC argument shows depth $O(\log n)$

Linear programming.

- define
- assumptions:
- nonempty, bounded polyhedron
- minimizing x_{1}
- unique minimum, at a vertex
- exactly d constraints per vertex
- definitions:
- hyperplanes H
- basis $B(H)$ of hyperplanes that define optimum
- optimum value $O(H)$
- Simplex
- exhaustive polytope search:
- walks on vertices
- runs in $O\left(n^{\lceil d / 2\rceil}\right)$ time in theory
- often great in practice
- polytime algorithms exist (ellipsoid)
- but bit-dependent (weakly polynomial)!
- OPEN: strongly polynomial LP
- goal today: polynomial algorithms for small d

Random sampling algorithm

- Goal: find $B(H)$
- Plan: random sample
- solve random subproblem
- keep only violating constraints V
- recurse on leftover
- problem: violators may not contain all of $B(H)$
- bf BUT, contain some of $B(H)$
- opt of sample better than opt of whole
- but any point feasible for $B(H)$ no better than $O(H)$
- so current opt not feasible for $B(H)$
- so some $B(H)$ violated
- revised plan:
- random sample
- discard useless planes, add violators to "active set"
- repeat sample on whole problem while keeping active set
- claim: add one $B(H)$ per iteration
- Algorithm SampLP:
- set S of "active" hyperplanes.
- if $n<9 d^{2}$ do simplex $\left(d^{d / 2+O(1)}\right)$
- pick $R \subseteq H-S$ of size $d \sqrt{n}$
$-x \leftarrow \operatorname{SampLP}(R \cup S)$
- $V \leftarrow$ hyperplanes of H that violate x
- if $V \leq 2 \sqrt{n}$, add to S
- Runtime analysis:
- mean size of V at most \sqrt{n}
- each iteration adds to S with prob. 1/2.
- each successful iteration adds a $B(H)$ to S
- deduce expect $2 d$ iterations.
- $O(d n)$ per phase needed to check violating constraints: $O\left(d^{2} n\right)$ total
- recursion size at most $2 d \sqrt{n}$

$$
T(n) \leq 2 d T(2 d \sqrt{n})+O\left(d^{2} n\right)=O\left(d^{2} n \log n\right)+(\log n)^{O(\log d)}
$$

(Note valid use of linearity of expectation)
Must prove claim, that mean $V \leq \sqrt{n}$.

- Lemma:
- suppose $|H-S|=m$.
- sample R of size r from $H-S$
- then expected violators $d(m-r-1) /(r-d)$
- book broken: only works for empty S
- Let C_{H} be set of optima of subsets $T \cup S, T \subseteq H$
- Let C_{R} be set of optima of subsets $T \cup S, T \subseteq R$
- note $C_{R} \subseteq C_{H}$, and $O(R \cup S)$ is only point violating no constraints of R
- Let v_{x} be number of constraints in H violated by $x \in C_{H}$,
- Let i_{x} indicate $x=O P T(R \cup S)$

$$
\begin{aligned}
E[|V|] & =E\left[\sum v_{x} i_{x}\right] \\
& =\sum v_{x} \operatorname{Pr}\left[i_{x}\right]
\end{aligned}
$$

- decide $\operatorname{Pr}\left[v_{x}\right]$
- $\binom{m}{r}$ equally likely subsets.
- how many have optimum x ?
- let q_{x} be number of planes defining x not already in S
- must choose q_{x} planes to define x
- all others choices must avoid planes violating x. prob.

$$
\begin{aligned}
\binom{m-v_{x}-q_{x}}{r-q_{x}} /\binom{m}{r} & =\frac{\left(m-v_{x}-q_{x}\right)-\left(r-q_{x}\right)+1}{r-q_{x}}\binom{m-v_{x}-q_{x}}{r-q_{x}-1} /\binom{m}{r} \\
& \leq \frac{(m-r+1)}{r-d}\binom{m-v_{x}-q_{x}}{r-q_{x}-1} /\binom{m}{r}
\end{aligned}
$$

- deduce

$$
E[V] \leq \frac{m-r+1}{r-d} \sum v_{x}\binom{m-v_{x}-q_{x}}{r-q_{x}-1} /\binom{m}{r}
$$

- summand is prob that x is a point that violates exactly one constraint in r.
* must pick q_{x} constraints defining x
* must pick $r-q_{x}-1$ constraints from $m-v_{x}-q_{x}$ nonviolators
* must pick one of v_{x} violators
- therefore, sum is expected number of points that violate exactly one constraint in R.
- but this is only d (one for each constraint in basis of R)

Result:

- saw sampling LP that ran in time $O\left((\log n)^{O(\log d)}+d^{2} n \log n+d^{O(d)}\right.$
- key idea: if pick r random hyperplanes and solve, expect only $d m / r$ violating hyperplanes.

Iterative Reweighting

Get rid of recursion and highest order term.

- idea: be "softer" regarding mistakes
- plane in V gives "evidence" it's in $B(H)$
- Algorithm:
- give each plane weight one
- pick $9 d^{2}$ planes with prob. proportional to weights
- find optimum of R
- find violators of R
- if

$$
\sum_{h \in V} w_{h} \leq\left(2 \sum_{h \in H} w_{h}\right) /(9 d-1)
$$

then double violator weights

- repeat till no violators
- Analysis
- show weight of basis grows till rest is negligible.
- claim $O(d \log n)$ iterations suffice.
- claim iter successful with prob. $1 / 2$
- deduce runtime $O\left(d^{2} n \log n\right)+d^{d / 2+O(1)} \log n$.
- proof of claim:
* after each iter, double weight of some basis element
* after $k d$ iterations, basis weight at least $d 2^{k}$
* total weight increase at most $(1+2 /(9 d-1))^{k d} \leq n \exp (2 k d /(9 d-1))$
- after $d \log n$ iterations, done.
- so runtime $O\left(d^{2} n \log n\right)+d^{O(d)} \log n$
- Can improve to linear in n

Randomized incremental algorithm

$$
T(n) \leq T(n-1, d)+\frac{d}{n}(O(d n)+T(n-1, d-1))=O(d!n)
$$

Incomparable to prior bound.
Can improve to $O\left(d^{4} 2^{d} N\right)$ (see book)
Can improve to $O\left(d^{2} n+b^{\sqrt{d \log d \log n})}\right.$

