
Trapezoidal decomposition:

Motivation:

• manipulate/analayze a collection of segments

• e.g. detect segment intersections

• e.g., point location data structure

– Draw verticals at all points

– binary search for slab

– binary search inside slab

– problem: O(n2) space

Definition.

• draw altitudes from each intersection till hit a segment.

• trapezoid graph is planar (no crossing edges)

• each trapezoid is a face

• show a face.

• one face may have many vertices (from altitudes that hit the outside of the face)

• max vertex degree is 6 (assuming nondegeneracy)

• so total space O(n+ k) for k intersections.

• number of faces also O(n+ k) (each face needs one edge)

• (or use Euler’s theorem: nv − ne + nf ≥ 2)

• standard clockwise pointer representation lets you walk around a face

Randomized incremental construction:

• to insert segment, start at left endpoint

• draw altitudes from left end (splits a trapezoid)

• traverse segment to right endpoint, adding altitudes whenever intersect

• traverse again, erasing (half of) altitudes cut by segment

Implementation

• clockwise ordering of neighbors allows traversal of a face in time proportional to number
of vertices

1

• for each face, keep a (bidirectional) pointer to all not-yet-inserted left-endpoints in face

• to insert line, start at face containing left endpoint

• traverse face to see where leave it

• create intersection,

– update face (new altitude splits in half)

– update left-end pointers

• segment cuts some altititudes: destroy half

– removing altitude merges faces

– update left-end pointers

Analysis:

• Overall, update left-end-pointers in faces neighboring new line

• time to insert s is ∑
f∈F (s)

(n(f) + `(f))

where

– F (s) is faces s bounds after insertion

– n(f) is number of vertices in face f

– `(f) is number of left-ends in f .

• So if Si is first i segmenets inserted, expected work of insertion i is

1

i

∑
s∈Si

∑
f∈F (s)

(n(f) + `(f))

• Note each f appears at most 4 times in sum

• so O(1
i

∑
f (n(f) + `(f))).

• Bound endpoint contribution:

– note
∑
l(f) = n− i

– so contributes n/i

– so total O(n log n)

• Bound intersection contribution

–
∑
n(f) is O(ki + i) if ki intersections

2

– so cost is E[ki]

– intersection present if both segments in first i insertions

– so expected cost is O((i2/n2)k)

– so cost contribution (i/n2)k

– sum over i, get O(k)

– note: adding to RIC, assumption that first i items are random.

• Total: O(n log n+ k)

Search structure

Goal: apply binary search in slabs, without n2 space

• Idea: trapezoidal decomp is “important” part of vertical lines

• problem: slab search no longer well defined

• but we show ok

The structure:

• A kind of search tree

• “x nodes” test against an altitude

• “y nodes” test against a segment

• leaves are trapezoids

• each node has two children

• so works like a search tree

• bf But node may have many parents

• sharing descendants saves space.

Inserting an edge contained in a trapezoid

• update trapezoids

• build a 4-node subtree to replace leaf

Inserting an edge that crosses trapezoids

• sequence of traps ∆i

• if ∆0 has left endpoint, replace leaf with x-node for left endpoint and y-node for new
segment

3

• Same for last ∆

• middle ∆:

– cut off pieces form new trapezoids (leaves)

– replace each cut trapezoid with a y-node for new segment

– two children of y-node point to appropriate traps

– note trap can have several incoming nodes

Proof of correctness:

• Claim after each insert, valid search for current segments

• consider last insertion

• search gets to correct place before insertion

• new nodes continue search to correct place

Search time analysis

• depth increases by one for new trapezoids “below” new segment

• RIC argument shows depth O(log n)

Linear programming.

• define

• assumptions:

– nonempty, bounded polyhedron

– minimizing x1

– unique minimum, at a vertex

– exactly d constraints per vertex

• definitions:

– hyperplanes H

– basis B(H) of hyperplanes that define optimum

– optimum value O(H)

• Simplex

– exhaustive polytope search:

– walks on vertices

– runs in O(ndd/2e) time in theory

4

– often great in practice

• polytime algorithms exist (ellipsoid)

• but bit-dependent (weakly polynomial)!

• OPEN: strongly polynomial LP

• goal today: polynomial algorithms for small d

Random sampling algorithm

• Goal: find B(H)

• Plan: random sample

– solve random subproblem

– keep only violating constraints V

– recurse on leftover

• problem: violators may not contain all of B(H)

• bf BUT, contain some of B(H)

– opt of sample better than opt of whole

– but any point feasible for B(H) no better than O(H)

– so current opt not feasible for B(H)

– so some B(H) violated

• revised plan:

– random sample

– discard useless planes, add violators to “active set”

– repeat sample on whole problem while keeping active set

– claim: add one B(H) per iteration

• Algorithm SampLP:

– set S of “active” hyperplanes.

– if n < 9d2 do simplex (dd/2+O(1))

– pick R ⊆ H − S of size d
√
n

– x← SampLP(R ∪ S)

– V ← hyperplanes of H that violate x

– if V ≤ 2
√
n, add to S

• Runtime analysis:

5

– mean size of V at most
√
n

– each iteration adds to S with prob. 1/2.

– each successful iteration adds a B(H) to S

– deduce expect 2d iterations.

– O(dn) per phase needed to check violating constraints: O(d2n) total

– recursion size at most 2d
√
n

T (n) ≤ 2dT (2d
√
n) +O(d2n) = O(d2n log n) + (log n)O(log d)

(Note valid use of linearity of expectation)

Must prove claim, that mean V ≤
√
n.

• Lemma:

– suppose |H − S| = m.

– sample R of size r from H − S
– then expected violators d(m− r − 1)/(r − d)

• book broken: only works for empty S

• Let CH be set of optima of subsets T ∪ S, T ⊆ H

• Let CR be set of optima of subsets T ∪ S, T ⊆ R

• note CR ⊆ CH , and O(R ∪ S) is only point violating no constraints of R

• Let vx be number of constraints in H violated by x ∈ CH ,

• Let ix indicate x = OPT (R ∪ S)

E[|V |] = E[
∑

vxix]

=
∑

vx Pr[ix]

• decide Pr[vx]

–
(
m
r

)
equally likely subsets.

– how many have optimum x?

– let qx be number of planes defining x not already in S

– must choose qx planes to define x

– all others choices must avoid planes violating x. prob.(
m− vx − qx
r − qx

)
/

(
m

r

)
=

(m− vx − qx)− (r − qx) + 1

r − qx

(
m− vx − qx
r − qx − 1

)
/

(
m

r

)
≤ (m− r + 1)

r − d

(
m− vx − qx
r − qx − 1

)
/

(
m

r

)

6

– deduce

E[V] ≤ m− r + 1

r − d
∑

vx

(
m− vx − qx
r − qx − 1

)
/

(
m

r

)
– summand is prob that x is a point that violates exactly one constraint in r.

∗ must pick qx constraints defining x

∗ must pick r − qx − 1 constraints from m− vx − qx nonviolators

∗ must pick one of vx violators

– therefore, sum is expected number of points that violate exactly one constraint in
R.

– but this is only d (one for each constraint in basis of R)

Result:

• saw sampling LP that ran in time O((log n)O(log d) + d2n log n+ dO(d)

• key idea: if pick r random hyperplanes and solve, expect only dm/r violating hyper-
planes.

Iterative Reweighting

Get rid of recursion and highest order term.

• idea: be “softer” regarding mistakes

• plane in V gives “evidence” it’s in B(H)

• Algorithm:

– give each plane weight one

– pick 9d2 planes with prob. proportional to weights

– find optimum of R

– find violators of R

– if ∑
h∈V

wh ≤ (2
∑
h∈H

wh)/(9d− 1)

then double violator weights

– repeat till no violators

• Analysis

– show weight of basis grows till rest is negligible.

– claim O(d log n) iterations suffice.

– claim iter successful with prob. 1/2

7

– deduce runtime O(d2n log n) + dd/2+O(1) log n.

– proof of claim:

∗ after each iter, double weight of some basis element

∗ after kd iterations, basis weight at least d2k

∗ total weight increase at most (1 + 2/(9d− 1))kd ≤ n exp(2kd/(9d− 1))

– after d log n iterations, done.

• so runtime O(d2n log n) + dO(d) log n

• Can improve to linear in n

Randomized incremental algorithm

T (n) ≤ T (n− 1, d) +
d

n
(O(dn) + T (n− 1, d− 1)) = O(d!n)

Incomparable to prior bound.
Can improve to O(d42dN) (see book)
Can improve to O(d2n+ b

√
d log d logn)

8

