Trapezoidal decomposition:

Motivation:
e manipulate/analayze a collection of segments
e c.g. detect segment intersections
e c.g., point location data structure

— Draw verticals at all points
— binary search for slab
— binary search inside slab

— problem: O(n?) space

Definition.

e draw altitudes from each intersection till hit a segment.

e trapezoid graph is planar (no crossing edges)

e cach trapezoid is a face

e show a face.

e one face may have many vertices (from altitudes that hit the outside of the face)

e max vertex degree is 6 (assuming nondegeneracy)

e so total space O(n + k) for k intersections.

e number of faces also O(n + k) (each face needs one edge)

e (or use Euler’s theorem: n, —n. +ny > 2)

e standard clockwise pointer representation lets you walk around a face
Randomized incremental construction:

e to insert segment, start at left endpoint

e draw altitudes from left end (splits a trapezoid)

e traverse segment to right endpoint, adding altitudes whenever intersect

e traverse again, erasing (half of) altitudes cut by segment
Implementation

e clockwise ordering of neighbors allows traversal of a face in time proportional to number
of vertices

for each face, keep a (bidirectional) pointer to all not-yet-inserted left-endpoints in face

to insert line, start at face containing left endpoint

traverse face to see where leave it

create intersection,

— update face (new altitude splits in half)
— update left-end pointers

segment cuts some altititudes: destroy half

— removing altitude merges faces

— update left-end pointers
Analysis:
e Overall, update left-end-pointers in faces neighboring new line

e time to insert s is

> (n(f) + (1))

JFEF(s)

where

— F(s) is faces s bounds after insertion
— n(f) is number of vertices in face f
— ((f) is number of left-ends in f.

e So if S; is first ¢ segmenets inserted, expected work of insertion % is

S SRCERRITs)

s€S; feF(s)

e Note each f appears at most 4 times in sum

o 50 O(5 24(n(f) +€(f)))-

e Bound endpoint contribution:
— note Y_I(f)=n—1
— so contributes n/i

— so total O(nlogn)
e Bound intersection contribution

— > n(f) is O(k; + 1) if k; intersections

— so cost is Ek;]

— intersection present if both segments in first ¢ insertions
— so expected cost is O((i%/n?)k)

— so cost contribution (i/n?)k

— sum over i, get O(k)

— note: adding to RIC, assumption that first ¢ items are random.

e Total: O(nlogn + k)

Search structure

Goal: apply binary search in slabs, without n? space
e Idea: trapezoidal decomp is “important” part of vertical lines
e problem: slab search no longer well defined
e but we show ok
The structure:
e A kind of search tree
e “r nodes” test against an altitude
e “y nodes” test against a segment
e leaves are trapezoids
e cach node has two children
e so works like a search tree
e bf But node may have many parents
e sharing descendants saves space.
Inserting an edge contained in a trapezoid
e update trapezoids
e build a 4-node subtree to replace leaf
Inserting an edge that crosses trapezoids
e sequence of traps A;

e if Ay has left endpoint, replace leaf with z-node for left endpoint and y-node for new
segment

e Same for last A
e middle A:

— cut off pieces form new trapezoids (leaves)

— replace each cut trapezoid with a y-node for new segment

two children of y-node point to appropriate traps

note trap can have several incoming nodes
Proof of correctness:
e Claim after each insert, valid search for current segments
e consider last insertion
e search gets to correct place before insertion
e new nodes continue search to correct place
Search time analysis
e depth increases by one for new trapezoids “below” new segment

e RIC argument shows depth O(logn)

Linear programming.

o define

assumptions:

nonempty, bounded polyhedron
— minimizing
— unique minimum, at a vertex

— exactly d constraints per vertex

definitions:

— hyperplanes H
— basis B(H) of hyperplanes that define optimum
— optimum value O(H)

Simplex

— exhaustive polytope search:
— walks on vertices

— runs in O(n!%?1) time in theory

— often great in practice
e polytime algorithms exist (ellipsoid)
e but bit-dependent (weakly polynomial)!
e OPEN: strongly polynomial LP
e goal today: polynomial algorithms for small d

Random sampling algorithm

e Goal: find B(H)

e Plan: random sample
— solve random subproblem
— keep only violating constraints V'
— recurse on leftover
e problem: violators may not contain all of B(H)
e bf BUT, contain some of B(H)
— opt of sample better than opt of whole
— but any point feasible for B(H) no better than O(H)
— so current opt not feasible for B(H)
— so some B(H) violated
e revised plan:
— random sample
— discard useless planes, add violators to “active set”
— repeat sample on whole problem while keeping active set
— claim: add one B(H) per iteration
e Algorithm SampLP:

— set S of “active” hyperplanes.

— if n < 9d? do simplex (d%?*+OW)

— pick R C H — S of size dy/n

— z «+ SampLP(R U S)

— V « hyperplanes of H that violate x
if V<2y/n,add to S

e Runtime analysis:

— mean size of V' at most /n
each iteration adds to S with prob. 1/2.

each successful iteration adds a B(H) to S

— deduce expect 2d iterations.

O(dn) per phase needed to check violating constraints: O(d?*n) total

— recursion size at most 2d/n
T(n) < 2dT(2dv/n) + O(d*n) = O(d*nlogn) + (logn)°Ued
(Note valid use of linearity of expectation)
Must prove claim, that mean V' < /n.
e Lemma:

— suppose |H — S| =m.
— sample R of size r from H — S

— then expected violators d(m —r — 1) /(r — d)
e book broken: only works for empty S
e Let C'y be set of optima of subsets TUS, T C H
e Let Cg be set of optima of subsets TUS, T C R
e note Cr C Cy, and O(R U S) is only point violating no constraints of R
e Let v, be number of constraints in H violated by x € Cy,

e Let i, indicate z = OPT(RUS)
EIV] = B[Y_v.i,]
= Z vz Prfi,]
e decide Prluv,]

- (T) equally likely subsets.

— how many have optimum x7?

— let ¢, be number of planes defining not already in S
— must choose ¢, planes to define x

— all others choices must avoid planes violating x. prob.
M — Uz — (g / m _ (m_vx_QI)_(r_Qx)+1 m— Uy — (qx / m
T —dqx r B =4z T_QJ:_l r

S RilE

— deduce .
m—r—+ m — Uy — m
r—d r—q,—1 r
— summand is prob that z is a point that violates exactly one constraint in 7.

x must pick ¢, constraints defining x
* must pick r — ¢, — 1 constraints from m — v, — ¢, nonviolators

* must pick one of v, violators

— therefore, sum is expected number of points that violate exactly one constraint in
R.

— but this is only d (one for each constraint in basis of R)
Result:
e saw sampling LP that ran in time O((logn)°1°¢% + d?nlogn + d°@

e key idea: if pick r random hyperplanes and solve, expect only dm/r violating hyper-
planes.

Iterative Reweighting

Get rid of recursion and highest order term.

e idea: be “softer” regarding mistakes
e plane in V gives “evidence” it’s in B(H)
e Algorithm:

— give each plane weight one

— pick 9d? planes with prob. proportional to weights
— find optimum of R

— find violators of R

— if

D wn (2 wh)/(9d—1)

heV heH

then double violator weights

— repeat till no violators
e Analysis

— show weight of basis grows till rest is negligible.
— claim O(dlogn) iterations suffice.

— claim iter successful with prob. 1/2

— deduce runtime O(d?nlogn) + d¥?**°W log n.
— proof of claim:

x after each iter, double weight of some basis element
* after kd iterations, basis weight at least d2*
* total weight increase at most (14 2/(9d — 1))* < nexp(2kd/(9d — 1))

— after dlogn iterations, done.
e so runtime O(d?*nlogn) + d°@logn

e Can improve to linear in n

Randomized incremental algorithm

T(n) <T(n-—1,d) + g(O(dn) +T(n—1,d—1)) =0(dn)

Incomparable to prior bound.
Can improve to O(d*2¢N) (see book)
Can improve to O(d?n + bvdloedlosn)

