Admin

No bibles.
Homework. Start early. A few thursday questions.
Picking random item.

Complexity.

What is a rand. alg?
What is an alg?

- Turing Machines. RAM with large ints. log-cost RAM as TM.
- language as decision problem (vs optimization problems) "graphs with small min-cut." algos accept/reject
- complexity class as set of languages
- P. polynomial time in input size
- $N P$ as P with good advice string. witnesses
- polytime reductions. hardness, completeness.

Randomized algorithms have advice string, but it is random

- measure probs over space of advice strings
- equivalence to fliping unbiased random bits
$Z P P$ (zero error probabilistic polytime)
- Polynomial expected time
- $A(x)$ accepts iff $x \in L$.
- Las Vegas algorithms
$R P$ (randomized polytime) (MC with one-sided error).
- polytime (always)
- $x \notin L \Rightarrow$ rejects (always).
- $x \in L \Rightarrow$ accepts with probability $>1 / 2$.
- Monte Carlo algorithm
- one sided error
- precise numbers unimportant: amplification.
- min-cut example
- corP.
- What if NOT worst case polytime? stop when passes time bound and accept.
- $Z P P=R P \cap c o R P$
$P P$ (probabilistic polytime) (two-sided MC)
- Worst case polytime (can force)
- $x \in L \Rightarrow$ accepts prob $>1 / 2$
- $x \notin L \Rightarrow$ accepts prob $<1 / 2$
- weakness: $N P \subseteq P P$
$B P P$ (bounded probabilistic polytime)
- worst case polytime (can force)
- $x \in L \Rightarrow$ accepts prob $>3 / 4$
- $x \notin L \Rightarrow$ accepts prob $<1 / 4$
- precise numbers unimportant.

Clearly $P \subseteq R P \subseteq N P$. Open questions:

- $R P=c o R P$? (equiv $R P=Z P P$)
- $B P P \subseteq N P ?$

Tree evaluation.

Moving LOE through a (linear) recurrence.

- define. algo cost is number of leaves. $n=2^{h}$
- NOR model
deterministic model: must examine all leaves. time $2^{h}=4^{h / 2}=n$
- by induction: on any tree of height h, as questions are asked, can answer such that root is not determined until all leaves checked.
- Note: bad instance being constructed on the fly as algorithm runs.
- But, since algorithm deterministic, bad instance can be built in advance by simulating algorithm.
nondeterministic/checking
- $W(0)=L(0)=1$
- winning position can guess move. $W(h)=L(h-1)$
- losing must check both. $L(h)=2 W(h-1)$
- follows $W(h)=2 * W(h-2)=2^{h / 2}=n^{1 / 2}$
randomized-guess which leaf wins.
- $T(0)=1$
- $W(T)$ is a random variable
- If T is winning time it takes to verify T is a win. Undefined if T is losing.
- Ditto $L(T)$.
- Expectation is over random choices of algorithm; NOT over trees.
- Different trees have different expectations
- $W(h)=$ max over all height- h winning trees of $E[W(T)]$
- $L(h)=$ same for losing trees.
- Consider any losing height- h tree
- both children are winning
- must eval both.
- each takes at most $W(h-1)$ in expectation
- Thus (by linearity of expectation) we take at most $2 W(h-1)$
- Deduce $L(h) \leq 2 W(h-1)$.
- Consider any winning height- h tree
- Possibly both children are losing. If so, we stop after evaling the first child we pick. Total time $L(h-1)$.
- If exactly one child losing, two cases:
* if first choice is winning, eval it and stop: time at most $L(h-1)$.
* if first choice is losing, eval both children: $L(h-1)+W(h-1)$.
* Conjecture: $W(h-1) \leq L(h-1)$
* Then time $\leq 2 L(h-1)$.
- Each case $1 / 2$ the time. Thus, expected time $\leq(3 / 2) L(h-1)$.
- Deduce $W(h) \leq(3 / 2) L(h-1) \leq(3 / 2) 2 W(h-2)=3 W(h-2)$
- So $W(h) \leq 3^{h / 2}=n^{\log _{4} 3}=n^{0.793}$
- Go back and confirm assumption that $W(h) \leq L(h)$.

