
Linear programming.

• define

• assumptions:

– nonempty, bounded polyhedron

– minimizing x1

– unique minimum, at a vertex

– exactly d constraints per vertex

• definitions:

– hyperplanes H

– basis B(H) of hyperplanes that define optimum

– optimum value O(H)

• Simplex

– exhaustive polytope search:

– walks on vertices

– runs in O(ndd/2e) time in theory

– often great in practice

• polytime algorithms exist (ellipsoid)

• but bit-dependent (weakly polynomial)!

• OPEN: strongly polynomial LP

• goal today: polynomial algorithms for small d

Random sampling algorithm

• Goal: find B(H)

• Plan: random sample

– solve random subproblem

– keep only violating constraints V

– recurse on leftover

• problem: violators may not contain all of B(H)

• bf BUT, contain some of B(H)

– opt of sample better than opt of whole

1

– but any point feasible for B(H) no better than O(H)

– so current opt not feasible for B(H)

– so some B(H) violated

• revised plan:

– random sample

– discard useless planes, add violators to “active set”

– repeat sample on whole problem while keeping active set

– claim: add one B(H) per iteration

• Algorithm SampLP:

– set S of “active” hyperplanes.

– if n < 9d2 do simplex (dd/2+O(1))

– pick R ⊆ H − S of size d
√
n

– x← SampLP(R ∪ S)

– V ← hyperplanes of H that violate x

– if V ≤ 2
√
n, add to S

• Runtime analysis:

– mean size of V at most
√
n

– each iteration adds to S with prob. 1/2.

– each successful iteration adds a B(H) to S

– deduce expect 2d iterations.

– O(dn) per phase needed to check violating constraints: O(d2n) total

– recursion size at most 2d
√
n

T (n) ≤ 2dT (2d
√
n) +O(d2n) = O(d2n log n) + (log n)O(log d)

(Note valid use of linearity of expectation)

Must prove claim, that mean V ≤
√
n.

• Lemma:

– suppose |H − S| = m.

– sample R of size r from H − S
– then expected violators d(m− r − 1)/(r − d)

• book broken: only works for empty S

2

• Let CH be set of optima of subsets T ∪ S, T ⊆ H

• Let CR be set of optima of subsets T ∪ S, T ⊆ R

• note CR ⊆ CH , and O(R ∪ S) is only point violating no constraints of R

• Let vx be number of constraints in H violated by x ∈ CH ,

• Let ix indicate x = OPT (R ∪ S)

E[|V |] = E[
∑

vxix]

=
∑

vx Pr[ix]

• decide Pr[vx]

–
(
m
r

)
equally likely subsets.

– how many have optimum x?

– let qx be number of planes defining x not already in S

– must choose qx planes to define x

– all others choices must avoid planes violating x. prob.(
m− vx − qx
r − qx

)
/

(
m

r

)
=

(m− vx − qx)− (r − qx) + 1

r − qx

(
m− vx − qx
r − qx − 1

)
/

(
m

r

)
≤ (m− r + 1)

r − d

(
m− vx − qx
r − qx − 1

)
/

(
m

r

)
– deduce

E[V] ≤ m− r + 1

r − d
∑

vx

(
m− vx − qx
r − qx − 1

)
/

(
m

r

)
– summand is prob that x is a point that violates exactly one constraint in r.

∗ must pick qx constraints defining x

∗ must pick r − qx − 1 constraints from m− vx − qx nonviolators

∗ must pick one of vx violators

– therefore, sum is expected number of points that violate exactly one constraint in
R.

– but this is only d (one for each constraint in basis of R)

Result:

• saw sampling LP that ran in time O((log n)O(log d) + d2n log n+ dO(d)

• key idea: if pick r random hyperplanes and solve, expect only dm/r violating hyper-
planes.

3

Iterative Reweighting

Get rid of recursion and highest order term.

• idea: be “softer” regarding mistakes

• plane in V gives “evidence” it’s in B(H)

• Algorithm:

– give each plane weight one

– pick 9d2 planes with prob. proportional to weights

– find optimum of R

– find violators of R

– if ∑
h∈V

wh ≤ (2
∑
h∈H

wh)/(9d− 1)

then double violator weights

– repeat till no violators

• Analysis

– show weight of basis grows till rest is negligible.

– claim O(d log n) iterations suffice.

– claim iter successful with prob. 1/2

– deduce runtime O(d2n log n) + dd/2+O(1) log n.

– proof of claim:

∗ after each iter, double weight of some basis element

∗ after kd iterations, basis weight at least d2k

∗ total weight increase at most (1 + 2/(9d− 1))kd ≤ n exp(2kd/(9d− 1))

– after d log n iterations, done.

• so runtime O(d2n log n) + dO(d) log n

• Can improve to linear in n

Randomized incremental algorithm

T (n) ≤ T (n− 1, d) +
d

n
(O(dn) + T (n− 1, d− 1)) = O(d!n)

Incomparable to prior bound.
Improvement to Seidel:

• Silly to discard previous info on recursion

4

• tested basis B, violated by H

• start from basis of B ∪ {h}

• Intuition: forms good starting point for recursive call

• “hidden dimension” is how many of true basis hyperplanes are in current bases

• show hidden dimension rises quickly

• improves bound to O(d42dN) (see book)

Followups:

• Kalai achieved nO(
√
d log d) (subexponential)

• led to more careful analysis above: nd
√
d logn

• combined with above to O(d2n+ b
√
d log d logn)

Is polynomial possible?

• these are all simplex algorithms

• cannot do better than diameter of graph

• Kalai and Kleitman proved n2+log d

• must better than best algs, but still not poly

1 Voronoi Diagram

Goal: find nearest athena terminal to query point.
Definitions:

• point set p

• V (pi) is space closer to pi than anything else

• for two points, V (P) is bisecting line

• For 3 points, creates a new “voronoi” point

• And for many points, V (pi) is intersection of halfplanes, so a convex polyhedron

• And nonempty of course.

• but might be infinite

• Given VD, can find nearest neighbor view planar point location:

• O(log n) using persistent trees

5

Space complexity:

• VD is a planar graph: no two voronoi edges cross (if count voronoi points)

• add one point at infinity to make it a proper graph with ends

• Euler’s formula: nv − ne + nf = 2

• (nv is voronoi points, not original ones)

• But nf = n

• Also, every voronoi point has degree at least 3 while every edge has two endpoints.

• Thus, 2ne ≥ 3(nv + 1)

• rewrite 2(n+ nv − 2) ≥ 3(nv + 1)

• So n− 2 ≥ (nv + 3)/2, ie nv ≤ 2n− 7

• Gives ne ≤ 3n− 6

Summary: V (P) has linear space and O(log n) query time.
Which voronoi points and lines survive?

• if no other point inside circle containing them, then survive

Delaunay Triangulation

For interpolation

• Given values at set of points

• interpolate elsehwere by convex combination

• eg, topographical map with heights at given points.

Goal: no skinny triangles

• Consider 4 points in convex

• two triangulations

• one makes fatter triangles

• it’s the one with no points inside those triangles

• Delaunay triangles: triples with no points inside circles

Voronoi and Delunay

• Define planar dual graph

• argue based on containined circles

6

Construction

Several methods

• Voronoi is projection of convex hull of lift

• Or, build Delaunay, take dual

To build Delaunay:

• Find “illegal edge”, flip

Incremental construction

• Insert point (inside some triangle)

• draw 3 lines

• flip illegal edges till stable

• Claim: Illegal edges only at changes, so can propogate from insertion

• Claim: All flips produce edges incident on new point, which are Delaunay

Analysis:

• Each flip takes constant time, so proportional to number of flips

• So proportional to final number of edges on inserted point

• RIC. Average degree constant

• So flip work per insert constant

• So O(n) flip work

Detail:

• Need to know which triangle point goes in

• Use point location like TD

• When destroy triangles, point their (leaf) nodes to subtrangles

• Point location search by testing all (at most 3) children

• RIC: expected depth O(log n)

7

