Linear programming.

- define
- assumptions:
- nonempty, bounded polyhedron
- minimizing x_{1}
- unique minimum, at a vertex
- exactly d constraints per vertex
- definitions:
- hyperplanes H
- basis $B(H)$ of hyperplanes that define optimum
- optimum value $O(H)$
- Simplex
- exhaustive polytope search:
- walks on vertices
- runs in $O\left(n^{\lceil d / 2\rceil}\right)$ time in theory
- often great in practice
- polytime algorithms exist (ellipsoid)
- but bit-dependent (weakly polynomial)!
- OPEN: strongly polynomial LP
- goal today: polynomial algorithms for small d

Random sampling algorithm

- Goal: find $B(H)$
- Plan: random sample
- solve random subproblem
- keep only violating constraints V
- recurse on leftover
- problem: violators may not contain all of $B(H)$
- bf BUT, contain some of $B(H)$
- opt of sample better than opt of whole
- but any point feasible for $B(H)$ no better than $O(H)$
- so current opt not feasible for $B(H)$
- so some $B(H)$ violated
- revised plan:
- random sample
- discard useless planes, add violators to "active set"
- repeat sample on whole problem while keeping active set
- claim: add one $B(H)$ per iteration
- Algorithm SampLP:
- set S of "active" hyperplanes.
- if $n<9 d^{2}$ do simplex $\left(d^{d / 2+O(1)}\right)$
- pick $R \subseteq H-S$ of size $d \sqrt{n}$
$-x \leftarrow \operatorname{SampLP}(R \cup S)$
- $V \leftarrow$ hyperplanes of H that violate x
- if $V \leq 2 \sqrt{n}$, add to S
- Runtime analysis:
- mean size of V at most \sqrt{n}
- each iteration adds to S with prob. 1/2.
- each successful iteration adds a $B(H)$ to S
- deduce expect $2 d$ iterations.
- $O(d n)$ per phase needed to check violating constraints: $O\left(d^{2} n\right)$ total
- recursion size at most $2 d \sqrt{n}$

$$
T(n) \leq 2 d T(2 d \sqrt{n})+O\left(d^{2} n\right)=O\left(d^{2} n \log n\right)+(\log n)^{O(\log d)}
$$

(Note valid use of linearity of expectation)
Must prove claim, that mean $V \leq \sqrt{n}$.

- Lemma:
- suppose $|H-S|=m$.
- sample R of size r from $H-S$
- then expected violators $d(m-r-1) /(r-d)$

- book broken: only works for empty S

- Let C_{H} be set of optima of subsets $T \cup S, T \subseteq H$
- Let C_{R} be set of optima of subsets $T \cup S, T \subseteq R$
- note $C_{R} \subseteq C_{H}$, and $O(R \cup S)$ is only point violating no constraints of R
- Let v_{x} be number of constraints in H violated by $x \in C_{H}$,
- Let i_{x} indicate $x=O P T(R \cup S)$

$$
\begin{aligned}
E[|V|] & =E\left[\sum v_{x} i_{x}\right] \\
& =\sum v_{x} \operatorname{Pr}\left[i_{x}\right]
\end{aligned}
$$

- decide $\operatorname{Pr}\left[v_{x}\right]$
- $\binom{m}{r}$ equally likely subsets.
- how many have optimum x ?
- let q_{x} be number of planes defining x not already in S
- must choose q_{x} planes to define x
- all others choices must avoid planes violating x. prob.

$$
\begin{aligned}
\binom{m-v_{x}-q_{x}}{r-q_{x}} /\binom{m}{r} & =\frac{\left(m-v_{x}-q_{x}\right)-\left(r-q_{x}\right)+1}{r-q_{x}}\binom{m-v_{x}-q_{x}}{r-q_{x}-1} /\binom{m}{r} \\
& \leq \frac{(m-r+1)}{r-d}\binom{m-v_{x}-q_{x}}{r-q_{x}-1} /\binom{m}{r}
\end{aligned}
$$

- deduce

$$
E[V] \leq \frac{m-r+1}{r-d} \sum v_{x}\binom{m-v_{x}-q_{x}}{r-q_{x}-1} /\binom{m}{r}
$$

- summand is prob that x is a point that violates exactly one constraint in r.
* must pick q_{x} constraints defining x
* must pick $r-q_{x}-1$ constraints from $m-v_{x}-q_{x}$ nonviolators
* must pick one of v_{x} violators
- therefore, sum is expected number of points that violate exactly one constraint in R.
- but this is only d (one for each constraint in basis of R)

Result:

- saw sampling LP that ran in time $O\left((\log n)^{O(\log d)}+d^{2} n \log n+d^{O(d)}\right.$
- key idea: if pick r random hyperplanes and solve, expect only $d m / r$ violating hyperplanes.

Iterative Reweighting

Get rid of recursion and highest order term.

- idea: be "softer" regarding mistakes
- plane in V gives "evidence" it's in $B(H)$
- Algorithm:
- give each plane weight one
- pick $9 d^{2}$ planes with prob. proportional to weights
- find optimum of R
- find violators of R
- if

$$
\sum_{h \in V} w_{h} \leq\left(2 \sum_{h \in H} w_{h}\right) /(9 d-1)
$$

then double violator weights

- repeat till no violators
- Analysis
- show weight of basis grows till rest is negligible.
- claim $O(d \log n)$ iterations suffice.
- claim iter successful with prob. $1 / 2$
- deduce runtime $O\left(d^{2} n \log n\right)+d^{d / 2+O(1)} \log n$.
- proof of claim:
* after each iter, double weight of some basis element
* after $k d$ iterations, basis weight at least $d 2^{k}$
* total weight increase at most $(1+2 /(9 d-1))^{k d} \leq n \exp (2 k d /(9 d-1))$
- after $d \log n$ iterations, done.
- so runtime $O\left(d^{2} n \log n\right)+d^{O(d)} \log n$
- Can improve to linear in n

Randomized incremental algorithm

$$
T(n) \leq T(n-1, d)+\frac{d}{n}(O(d n)+T(n-1, d-1))=O(d!n)
$$

Incomparable to prior bound.
Improvement to Seidel:

- Silly to discard previous info on recursion
- tested basis B, violated by H
- start from basis of $B \cup\{h\}$
- Intuition: forms good starting point for recursive call
- "hidden dimension" is how many of true basis hyperplanes are in current bases
- show hidden dimension rises quickly
- improves bound to $O\left(d^{4} 2^{d} N\right)$ (see book)

Followups:

- Kalai achieved $n^{O(\sqrt{d \log d})}$ (subexponential)
- led to more careful analysis above: $n d^{\sqrt{d \log n}}$
- combined with above to $O\left(d^{2} n+b^{\sqrt{d \log d} \log n}\right)$

Is polynomial possible?

- these are all simplex algorithms
- cannot do better than diameter of graph
- Kalai and Kleitman proved $n^{2+\log d}$
- must better than best algs, but still not poly

1 Voronoi Diagram

Goal: find nearest athena terminal to query point.
Definitions:

- point set p
- $V\left(p_{i}\right)$ is space closer to p_{i} than anything else
- for two points, $V(P)$ is bisecting line
- For 3 points, creates a new "voronoi" point
- And for many points, $V\left(p_{i}\right)$ is intersection of halfplanes, so a convex polyhedron
- And nonempty of course.
- but might be infinite
- Given VD, can find nearest neighbor view planar point location:
- $O(\log n)$ using persistent trees

Space complexity:

- VD is a planar graph: no two voronoi edges cross (if count voronoi points)
- add one point at infinity to make it a proper graph with ends
- Euler's formula: $n_{v}-n_{e}+n_{f}=2$
- (n_{v} is voronoi points, not original ones)
- But $n_{f}=n$
- Also, every voronoi point has degree at least 3 while every edge has two endpoints.
- Thus, $2 n_{e} \geq 3\left(n_{v}+1\right)$
- rewrite $2\left(n+n_{v}-2\right) \geq 3\left(n_{v}+1\right)$
- So $n-2 \geq\left(n_{v}+3\right) / 2$, ie $n_{v} \leq 2 n-7$
- Gives $n_{e} \leq 3 n-6$

Summary: $V(P)$ has linear space and $O(\log n)$ query time.
Which voronoi points and lines survive?

- if no other point inside circle containing them, then survive

Delaunay Triangulation

For interpolation

- Given values at set of points
- interpolate elsehwere by convex combination
- eg, topographical map with heights at given points.

Goal: no skinny triangles

- Consider 4 points in convex
- two triangulations
- one makes fatter triangles
- it's the one with no points inside those triangles
- Delaunay triangles: triples with no points inside circles

Voronoi and Delunay

- Define planar dual graph
- argue based on containined circles

Construction

Several methods

- Voronoi is projection of convex hull of lift
- Or, build Delaunay, take dual

To build Delaunay:

- Find "illegal edge", flip

Incremental construction

- Insert point (inside some triangle)
- draw 3 lines
- flip illegal edges till stable
- Claim: Illegal edges only at changes, so can propogate from insertion
- Claim: All flips produce edges incident on new point, which are Delaunay

Analysis:

- Each flip takes constant time, so proportional to number of flips
- So proportional to final number of edges on inserted point
- RIC. Average degree constant
- So flip work per insert constant
- So $O(n)$ flip work

Detail:

- Need to know which triangle point goes in
- Use point location like TD
- When destroy triangles, point their (leaf) nodes to subtrangles
- Point location search by testing all (at most 3) children
- RIC: expected depth $O(\log n)$

