Linear programming.
o define
e assumptions:

— nonempty, bounded polyhedron
— minimizing x;
— unique minimum, at a vertex

— exactly d constraints per vertex

definitions:

— hyperplanes H
— basis B(H) of hyperplanes that define optimum
— optimum value O(H)

Simplex

— exhaustive polytope search:
— walks on vertices
— runs in O(n!%?!) time in theory

— often great in practice

polytime algorithms exist (ellipsoid)

but bit-dependent (weakly polynomial)!
e OPEN: strongly polynomial LP

e goal today: polynomial algorithms for small d

Random sampling algorithm
e Goal: find B(H)
e Plan: random sample

— solve random subproblem
— keep only violating constraints V'

— recurse on leftover
e problem: violators may not contain all of B(H)
e bf BUT, contain some of B(H)

— opt of sample better than opt of whole



— but any point feasible for B(H) no better than O(H)
— so current opt not feasible for B(H)
— so some B(H) violated

e revised plan:

— random sample
— discard useless planes, add violators to “active set”
— repeat sample on whole problem while keeping active set

— claim: add one B(H) per iteration

e Algorithm SampLP:

set S of “active” hyperplanes.

if n < 9d? do simplex (d%/2+°0)

— pick R C H — S of size dy/n

— x < SampLP(RUS)

— V « hyperplanes of H that violate x
— if V< 2y/n, add to S

e Runtime analysis:

— mean size of V' at most \/n

— each iteration adds to S with prob. 1/2.

— each successful iteration adds a B(H) to S

— deduce expect 2d iterations.

— O(dn) per phase needed to check violating constraints: O(d*n) total

— recursion size at most 2d/n
T(n) < 2dT(2dv/n) + O(d*n) = O(d*nlogn) + (logn)°Ued
(Note valid use of linearity of expectation)
Must prove claim, that mean V' < y/n.
e Lemma:

— suppose |[H — S| =m.
— sample R of size r from H — S

— then expected violators d(m —r —1)/(r — d)

e book broken: only works for empty S



Let Cy be set of optima of subsets TU S, T C H

Let Cg be set of optima of subsets T U S, T C R

note Cr C Cy, and O(R U S) is only point violating no constraints of R

Let v, be number of constraints in H violated by x € Cy,

Let i, indicate z = OPT(RUS)

BV = BLY v
= szPr[im]

decide Prlv,]

— (T) equally likely subsets.
— how many have optimum x7?

— let g, be number of planes defining = not already in S

must choose ¢, planes to define x

all others choices must avoid planes violating x. prob.
m — Uy — Qy / m . (m—%—%)—(r—%)‘f‘l m — Uy — (x / m
=4z r - =4z T_qg:_l r
(m—r+1)(m _Ux_Qx/
r—d r—q,—1
m—r—+1
EFV < ——— .
nem L (1) ()

summand is prob that x is a point that violates exactly one constraint in r.

IN

deduce

* must pick ¢, constraints defining x
* must pick r — ¢, — 1 constraints from m — v, — ¢, nonviolators

+* must pick one of v, violators

therefore, sum is expected number of points that violate exactly one constraint in
R.

— but this is only d (one for each constraint in basis of R)
Result:
e saw sampling LP that ran in time O((logn)?1°¢%) + d?nlogn + d°@

e key idea: if pick r random hyperplanes and solve, expect only dm/r violating hyper-
planes.



Iterative Reweighting

Get rid of recursion and highest order term.

e idea: be “softer” regarding mistakes
e plane in V gives “evidence” it’s in B(H)
e Algorithm:

— give each plane weight one

— pick 9d? planes with prob. proportional to weights
— find optimum of R

— find violators of R

— if

D wn (2 wy)/(9d - 1)

heV heH

then double violator weights

— repeat till no violators
e Analysis

— show weight of basis grows till rest is negligible.

claim O(dlogn) iterations suffice.

— claim iter successful with prob. 1/2

— deduce runtime O(d?*nlogn) + d¥?**°M) log n.
— proof of claim:

x after each iter, double weight of some basis element
* after kd iterations, basis weight at least d2F
* total weight increase at most (1 + 2/(9d — 1))* < nexp(2kd/(9d — 1))

— after dlogn iterations, done.
e so runtime O(d?*nlogn) + d°@logn

e Can improve to linear in n

Randomized incremental algorithm

T(n)<T(n-1,d)+ g(O(dn) +T(n—1,d—1)) = 0(dn)

n

Incomparable to prior bound.
Improvement to Seidel:

e Silly to discard previous info on recursion

4



e tested basis B, violated by H
e start from basis of BU {h}
e Intuition: forms good starting point for recursive call
e “hidden dimension” is how many of true basis hyperplanes are in current bases
e show hidden dimension rises quickly
e improves bound to O(d*2¢N) (see book)
Followups:
e Kalai achieved n®V@1°84) (subexponential)
e led to more careful analysis above: ndvéen
e combined with above to O(d?n + bvdloedlogn)
Is polynomial possible?
e these are all simplex algorithms
e cannot do better than diameter of graph
e Kalai and Kleitman proved n2tlosd

e must better than best algs, but still not poly

1 Voronoi Diagram

Goal: find nearest athena terminal to query point.
Definitions:

e point set p

e V(p;) is space closer to p; than anything else

e for two points, V(P) is bisecting line

e For 3 points, creates a new “voronoi” point

e And for many points, V(p;) is intersection of halfplanes, so a convex polyhedron
e And nonempty of course.

e but might be infinite

e Given VD, can find nearest neighbor view planar point location:

e O(logn) using persistent trees



Space complexity:

VD is a planar graph: no two voronoi edges cross (if count voronoi points)

add one point at infinity to make it a proper graph with ends

Euler’s formula: n, —ne +ny = 2

(n, is voronoi points, not original ones)

But ny =n

Also, every voronoi point has degree at least 3 while every edge has two endpoints.
Thus, 2n, > 3(n, + 1)

rewrite 2(n +n, —2) > 3(n, + 1)

Son—22>(n,+3)/2,ien, <2n—7

Gives n. < 3n—6

Summary: V(P) has linear space and O(logn) query time.
Which voronoi points and lines survive?

if no other point inside circle containing them, then survive

Delaunay Triangulation

For interpolation

Given values at set of points
interpolate elsehwere by convex combination

eg, topographical map with heights at given points.

: no skinny triangles

Consider 4 points in convex

two triangulations

one makes fatter triangles

it’s the one with no points inside those triangles

Delaunay triangles: triples with no points inside circles

Voronoi and Delunay

Define planar dual graph

argue based on containined circles



Construction

Several methods
e Voronoi is projection of convex hull of lift
e Or, build Delaunay, take dual
To build Delaunay:
e Find “illegal edge”, flip
Incremental construction
e Insert point (inside some triangle)
e draw 3 lines
e flip illegal edges till stable
e Claim: Illegal edges only at changes, so can propogate from insertion
e Claim: All flips produce edges incident on new point, which are Delaunay
Analysis:
e Each flip takes constant time, so proportional to number of flips
e So proportional to final number of edges on inserted point
e RIC. Average degree constant
e So flip work per insert constant
e So O(n) flip work
Detail:

e Need to know which triangle point goes in

Use point location like TD

When destroy triangles, point their (leaf) nodes to subtrangles

Point location search by testing all (at most 3) children

RIC: expected depth O(logn)



