Markov Chains for Sampling

Sampling:

- Given complex state space
- Want to sample from it
- Use some Markov Chain
- Run for a long time
- end up "near" stationary distribution
- Reduces sampling to local moves (easier)
- no need for global description of state space
- Allows sample from exponential state space

Formalize: what is "near" and "long time"?

- Stationary distribution π
- arbitrary distribution q
- relative pointwise distance (r.p.d.) $\max _{j}\left|q_{j}-\pi_{j}\right| / \pi_{j}$
- Intuitively close.
- Formally, suppose r.p.d. δ.
- Then $(1-\delta) \pi \leq q$
- So can express distribution q as "with probability $1-\delta$, sample from π. Else, do something wierd.
- So if δ small, "as if" sampling from π each time.
- If δ poly small, can do poly samples without goof
- Gives "almost stationary" sample from Markov Chain
- Mixing Time: time to reduce r.p.d to some ϵ

Eigenvalues

Method 1 for mixing time: Eigenvalues.

- Consider transition matrix P.
- Eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$
- Corresponding Eigenvectors e_{1}, \ldots, e_{n}.
- Any vector q can be written as $\sum a_{i} e_{i}$
- Then $q P=\sum a_{i} \lambda_{i} e_{i}$
- and $q P^{k}=\sum a_{i} \lambda_{i}^{k} e_{i}$
- so sufficient to understand eigenvalues and vectors.
- Is any $\left|\lambda_{i}\right|>1$?
- If so, $e_{i} P=\lambda_{i} P$
- let M be max entry of e_{i} (in absolute value)
- if $\lambda_{i}>1$, then some $e_{i} P$ entry is $\lambda_{i} M>M$
- any entry of $e_{i} P$ is a convex combo of values at most M, so max value M, contradiction.
- Deduce: all eigenvalues of stochastic matrix at most 1.
- How many $\lambda_{i}=1$?
- Stationary distribution $\left(e_{1}=\pi\right)$
- if any others, could add a little bit of it to e_{1}, get second stationary distribution
- What about -1? Only if periodic.
- so all other coordinates of eigenvalue decomposition decay as λ_{i}^{k}.
- So if can show other λ_{i} small, converge to stationary distribution fast.
- In particular, if $\lambda_{2}<1-1 /$ poly, get polynomial mixing time

Expanders:

- Definition: (n, d, c) expander is d-regular bipartite graph such that

$$
|\Gamma(S)| \geq(1+c(1-2|S| / n))|S|
$$

- Translation: any small set has constant factor as many neighbors
- no bottlenecks in graph
- Lemma: random walk on (n, d, c) expander with constant c has uniform stationary distribution and second eigenvalue $1-O(1 / d)$
- Lemma: if second eigenvalue of graph is $1-\epsilon / d$ for constant ϵ, then graph is an expander with constant c
- Deduce: mixing time in expander is $O(\log n)$ to get ϵ r.p.d. (since $\pi_{i}=1 / n$)
- How bound eigenvalues? Messy math.

Application: Permanent

Counting perfect matchings

- Choose random n-edge set
- check if matching
- problem: rare event
- to solve, need sample space where matchings are dense
- Idea: M_{n} dense in $M_{n} \cup M_{n-1}$
- recurse down

Random walk

- based on using uniform generation to do sampling.
- applies to minimum degree $n / 2$
- Let M_{k} be k-edge matchings, $\left\|M_{k}\right\|=m_{k}$
- algorithm estimates all ratios m_{k} / m_{k-1}, multiplies
- claim: ratio m_{k+1} / m_{k} polynomially bounded (dense).
- deduce sufficient to generate randomly from $M_{k} \cup M_{k-1}$, test frequency of m_{k}
- do so by random walk of local moves:
- with probability $1 / 2$. stay still
- else Pick random edge e
- if in M_{k} and e matched, remove
- if in M_{k-1} end e can be added, add.
- if in $M_{k}, e=(u, v), u$ matched to w and v unmatched, then match u to w.
- else do nothing
- Note that exactly one applies
- Matrix is symmetric (undirected), so double stochastic, so stationary distribution is uniform as desired.
- In text, prove $\lambda_{2}=1-1 / n^{O(1)}$ on an n vertex graph (by proving expansion property)
- so within $n^{O(1)}$ steps, rpd is polynomially small
- so probably doesn't matter,

Self-reducibility relationship between approximate counting and approximate uniform generation.

Volume

Outline:

- Describe problem. Membership oracle
- $\sharp P$ hard to volume intersection of half spaces in n dimensions
- In low dimensions, integral.
- even for convex bodies, can't do better than $(n / \log n))^{n}$ ratio
- what about FPRAS?

Estimating π :

- pick random in unit square
- check if in circle
- gives ratio of square to circle
- Extends to arbitrary shape with "membership oracle"
- Problem: rare events.
- Circle has good easy outer box

Problem: rare events:

- In 2d, long skinny shapes
- In high d, even round shape has exponentially larger bounding box

Solution: "creep up" on volume

- Assume P contains small sphere, radius r_{1}
- Consider sequence of spheres $S_{1}, S_{2}, \ldots, S_{k}$ growing by $1+1 / d$ radii (so volume ratio constant)
- Estimate ratio of $S_{1} \cap P$ to $S_{2} \cap P$ etc
- multiply estimates; errors multiple $(1+\epsilon / n)^{n}$
- At each step, need to random sample from $S_{i} \cap P$
- Sample method: random walk forbidden to leave $S_{i} \cap P$
- eigenvalues show rapid mixing

Coupling:

Method

- Run two copies of Markov chain X_{t}, Y_{t}
- Each considered in isolation is a copy of MC (that is, both have MC distribution)
- but they are not independent: they make dependent choices at each step
- in fact, after a while they are almost certainly the same
- Start Y_{t} in stationary distribution, X_{t} anywhere
- Coupling argument:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{t}=j\right] & =\operatorname{Pr}\left[X_{t}=j \mid X_{t}=Y_{t}\right] \operatorname{Pr}\left[X_{t}=Y_{t}\right]+\operatorname{Pr}\left[X_{t}=j \mid X_{t} \neq Y_{t}\right] \operatorname{Pr}\left[X_{t} \neq Y_{t}\right] \\
& =\operatorname{Pr}\left[Y_{t}=j\right] \operatorname{Pr}\left[X_{t}=Y_{t}\right]+\epsilon \operatorname{Pr}\left[X_{t}=j \mid X_{t} \neq Y_{t}\right]
\end{aligned}
$$

So just need to make ϵ (which is r.p.d.) small enough.
n-bit Hypercube walk: at each step, flip random bit to random value

- At step t, pick a random bit b, random value v
- both chains set but b to value v
- after $O(n \log n)$ steps, probably all bits mathched.

Counting k colorings when $k>2 \Delta+1$

- The reduction from (approximate) uniform generation
- compute ratio of coloring of G to coloring of $G-e$
- Recurse counting $G-e$ colorings
- Base case k^{n} colorings of empty graph
- Bounding the ratio:
- note $G-e$ colorings outnumber G colorings
- By how much? Let L colorings in difference (u and v same color)
- to make an L coloring a G coloring, change u to one of $k-\Delta=\Delta+1$ legal colors
- Each G-coloring arises at most one way from this
- So each L coloring has at least $\Delta+1$ neighbors unique to them
- So L is $1 /(\Delta+1)$ fraction of G.
- The chain:
- Pick random vertex, random color, try to recolor
- loops, so aperiodic
- Chain is time-reversible, so uniform distribution.
- Coupling:
- choose random vertex v (same for both)
- based on X_{t} and Y_{t}, choose bijection of colors
- choose random color c
- apply c to v in X_{t} (if can), $g(c)$ to v in Y_{t} (if can).
- What bijection?
* Let A be vertices that agree in color, D that disagree.
* if $v \in D$, let g be identity
* if $v \in A$, let N be neighbors of v
* let C_{X} be colors that N has in X but not Y (X can't use them at v)
* let C_{Y} similar, wlog larger than C_{X}
* g should swap each C_{X} with some C_{Y}, leave other colors fixed. Result: if X doesn't change, Y doesn't
- Convergence:
- Let $d^{\prime}(v)$ be number of neighbors of v in opposite set, so

$$
\sum_{v \in A} d^{\prime}(v)=\sum_{v \in D} d^{\prime}(v)=m^{\prime}
$$

- Let $\delta=|D|$
- Note at each step, δ changes by $0, \pm 1$
- When does it increase?
* v must be in A, but move to D
* happens if only one MC accepts new color
* If c not in C_{X} or C_{Y}, then $g(c)=c$ and both change
* If $c \in C_{X}$, then $g(c) \in C_{Y}$ so neither moves
* So must have $c \in C_{Y}$
* But $\left|C_{Y}\right| \leq d^{\prime}(v)$, so probability this happens is

$$
\sum_{v \in A} \frac{1}{n} \cdot \frac{d^{\prime}(v)}{k}=\frac{m^{\prime}}{k n}
$$

- When does it decrease?
* must have $v \in D$, only one moves
* sufficient that pick color not in either neighborhood of v,
* total neighborhood size 2Δ, but that counts the $d^{\prime}(v)$ elements of A twice.
* so Prob.

$$
\sum_{v \in D} \frac{1}{n} \cdot \frac{k-\left(2 \Delta-d^{\prime}(v)\right)}{k}=\frac{k-2 \Delta}{k n} \delta+\frac{m^{\prime}}{k n}
$$

- Deduce that expected change in δ is difference of above, namely

$$
-\frac{k-2 \Delta}{k n} \delta=-a \delta
$$

- So after t steps, $E\left[\delta_{t}\right] \leq(1-a)^{t} \delta_{0} \leq(1-a)^{t} n$.
- Thus, probability $\delta>0$ at most $(1-a)^{t} n$.
- But now note $a>1 / n^{2}$, so $n^{2} \log n$ steps reduce to one over polynomial chance.

Note: couple depends on state, but who cares

- From worm's eye view, each chain is random walk
- so, all arguments hold

Expander Walks

Another example and application: ($n, d, c)$-Expanders.

- bipartite
- n vertices, regular degree d
- $|\Gamma(S)| \geq(1+c(1-2|S| / n))|S|$
- factor c more neighbors, at least until S near $n / 2$.
- Add self loops (with probability $1 / 2$ to deal with periodicity.
- What is stationary distribution? Uniform.
- Intuition on convergence: because neighborhoods grow, position becomes unpredictable very fast.
- Theorem:

$$
\lambda_{2} \leq 1-\frac{c^{2}}{d\left(2048+4 c^{2}\right)}
$$

- Converse theorem: if $\lambda_{2} \leq 1-\epsilon$, get expander with

$$
c \geq 4\left(\epsilon-\epsilon^{2}\right)
$$

Gabber-Galil expanders:

- Do expanders exist? Yes! proof: probabilistic method.
- But in this case, can do better deterministically.
- Gabber Galil expanders.
- Let $n=2 m^{2}$. Vertices are (x, y) where $x, y \in Z_{m}$ (one set per side)
-5 neighbors: $(x, y),(x, x+y),(x, x+y+1),(x+y, y),(x+y+1, y)(\operatorname{add} \bmod m)$
- or 7 neighbors of similar form.
- Theorem: this $d=5$ graph has $c=(2-\sqrt{3}) / 4$, degree 7 has twice the expansion.
- in other words, c and d are constant.
- meaning $\lambda_{2}=1-\epsilon$ for some constant ϵ
- So random walks on this expander mix very fast: for polynomially small r.p.d., $O(\log n)$ steps of random walk suffice.
- Note also that n can be huge, since only need to store one vertex $(O(\log n)$ bits).

Application: conserving randomness.

- Consider an BPP algorithm (gives right answer with probability 99/100 (constant irrelevant) using n bits.
- t independent trials with majority rule reduce failure probability to $2^{-O(t)}$ (chernoff), but need $t n$ bits
- in case of $R P$, used 2-point sampling to get error $O(1 / t)$ with $2 n$ bits and t trials.
- Use walk instead.
- vertices are $N=2^{n}$ (n-bit) random strings for algorithm.
- edges as degree-7 expander
- only $1 / 100$ of vertices are bad.
- what is probability majority of time spent there?
- in limit, spend $1 / 100$ of time there
- how fast converge to limit? How long must we run?
- Power the markov chain so $\lambda_{2}^{\beta} \leq 1 / 10$ (constant number of steps)
- use random seeds encountered every β steps.
- number of bits needed:
- $O(n)$ for stationary starting point
-3β more per trial,
- Theorem: after $7 k$ samples, probability majority wrong is $1 / 2^{k}$. So error $1 / 2^{n}$ with $O(n)$ bits!
- Let B be powered transition matrix
- let $p^{(i)}$ be distribution of sample i, namely $p^{0} B^{i}$
- Let W be indicator matrix for good witnesses, namely 1 at diagonal i if i is a witness. \bar{W} completmentary set $I-W$.
- $\left\|p^{i} W\right\|_{1}$ is probability p^{i} is witness set. similar for nonwitness.
- Consider a sequence of $7 k$ results "witness or not"
- represent as matrices $S=\left(S_{1}, \ldots, S_{7 k}\right) \in\{W, \bar{W}\}^{7 k}$
- claim

$$
\operatorname{Pr}[S]=\left\|p^{(0)}\left(B S_{1}\right)\left(B S_{2}\right) \cdots\left(B S_{7 k}\right)\right\|_{1} .
$$

- defer: $\|p B W\|_{2} \leq\|p\|_{2}$ and $\|p B \bar{W}\|_{2} \leq \frac{1}{5}\|p\|_{2}$
- deduce if more than $7 k / 2$ bad witnesses,

$$
\begin{aligned}
\left\|p^{0} \prod B S_{i}\right\|_{1} & \leq \sqrt{N}\left\|p^{0} \prod B S_{i}\right\| \\
& \leq \sqrt{N}\left(\frac{1}{5}\right)^{7 k / 2}\left\|p^{0}\right\| \\
& \leq=\left(\frac{1}{5}\right)^{7 k / 2}
\end{aligned}
$$

- At same time, only $2^{7 k}$ bad sequences, so error prob. $2^{7 k} 5^{-7 k / 2} \leq 2^{-k}$
- proof of lemma:
- write $p=\sum c_{i} e_{i}$
- obviously $\|p B W\| \leq\|p W\|$ since W jiust zeros some stuff out.
- write $p=\pi+y$ as before where $y \cdot \pi=0$
- argue that $\|\pi B \bar{W}\| \leq\|\pi\| / 10$ and $y B \bar{W}\|\leq\| y \| / 10$, done.
- First π :
* recall $\pi B=\pi$ is uniform vector, all coords $1 / \sqrt{N}$
* \bar{W} has only $1 / 100$ of coordintes nonzero, so
* $\left\|e_{1} \bar{W}\right\|=\sqrt{(N / 100)(1 / N)}=1 / 10$
- Now y : just note $\|y B\| \leq\|y\| / 10$ since $\lambda_{2} \leq 1 / 10$. Then \bar{W} zeros out.
- summary: π part unlikely to be in witness set, y part unlikely to be relevant.

