
Markov Chains for Sampling

Sampling:

• Given complex state space

• Want to sample from it

• Use some Markov Chain

• Run for a long time

• end up “near” stationary distribution

• Reduces sampling to local moves (easier)

• no need for global description of state space

• Allows sample from exponential state space

Formalize: what is “near” and “long time”?

• Stationary distribution π

• arbitrary distribution q

• relative pointwise distance (r.p.d.) maxj |qj − πj|/πj

• Intuitively close.

• Formally, suppose r.p.d. δ.

• Then (1− δ)π ≤ q

• So can express distribution q as “with probability 1 − δ, sample from π. Else, do
something wierd.

• So if δ small, “as if” sampling from π each time.

• If δ poly small, can do poly samples without goof

• Gives “almost stationary” sample from Markov Chain

• Mixing Time: time to reduce r.p.d to some ε
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Eigenvalues

Method 1 for mixing time: Eigenvalues.

• Consider transition matrix P .

• Eigenvalues λ1 ≥ · · · ≥ λn

• Corresponding Eigenvectors e1, . . . , en.

• Any vector q can be written as
∑
aiei

• Then qP =
∑
aiλiei

• and qP k =
∑
aiλ

k
i ei

• so sufficient to understand eigenvalues and vectors.

• Is any |λi| > 1?

– If so, eiP = λiP

– let M be max entry of ei (in absolute value)

– if λi > 1, then some eiP entry is λiM > M

– any entry of eiP is a convex combo of values at most M , so max value M ,
contradiction.

– Deduce: all eigenvalues of stochastic matrix at most 1.

• How many λi = 1?

– Stationary distribution (e1 = π)

– if any others, could add a little bit of it to e1, get second stationary distribution

– What about −1? Only if periodic.

• so all other coordinates of eigenvalue decomposition decay as λki .

• So if can show other λi small, converge to stationary distribution fast.

• In particular, if λ2 < 1− 1/poly, get polynomial mixing time

Expanders:

• Definition: (n, d, c) expander is d-regular bipartite graph such that

|Γ(S)| ≥ (1 + c(1− 2|S|/n))|S|

• Translation: any small set has constant factor as many neighbors

• no bottlenecks in graph

2



• Lemma: random walk on (n, d, c) expander with constant c has uniform stationary
distribution and second eigenvalue 1−O(1/d)

• Lemma: if second eigenvalue of graph is 1 − ε/d for constant ε, then graph is an
expander with constant c

• Deduce: mixing time in expander is O(log n) to get ε r.p.d. (since πi = 1/n)

• How bound eigenvalues? Messy math.

Application: Permanent

Counting perfect matchings

• Choose random n-edge set

• check if matching

• problem: rare event

• to solve, need sample space where matchings are dense

• Idea: Mn dense in Mn ∪Mn−1

• recurse down

Random walk

• based on using uniform generation to do sampling.

• applies to minimum degree n/2

• Let Mk be k-edge matchings, ‖Mk‖ = mk

• algorithm estimates all ratios mk/mk−1, multiplies

• claim: ratio mk+1/mk polynomially bounded (dense).

• deduce sufficient to generate randomly from Mk ∪Mk−1, test frequency of mk

• do so by random walk of local moves:

– with probability 1/2. stay still

– else Pick random edge e

– if in Mk and e matched, remove

– if in Mk−1 end e can be added, add.

– if in Mk, e = (u, v), u matched to w and v unmatched, then match u to w.

– else do nothing

– Note that exactly one applies
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• Matrix is symmetric (undirected), so double stochastic, so stationary distribution is
uniform as desired.

• In text, prove λ2 = 1− 1/nO(1) on an n vertex graph (by proving expansion property)

• so within nO(1) steps, rpd is polynomially small

• so probably doesn’t matter,

Self-reducibility relationship between approximate counting and approximate uniform gen-
eration.

Volume

Outline:

• Describe problem. Membership oracle

• ]P hard to volume intersection of half spaces in n dimensions

• In low dimensions, integral.

• even for convex bodies, can’t do better than (n/ log n))n ratio

• what about FPRAS?

Estimating π:

• pick random in unit square

• check if in circle

• gives ratio of square to circle

• Extends to arbitrary shape with “membership oracle”

• Problem: rare events.

• Circle has good easy outer box

Problem: rare events:

• In 2d, long skinny shapes

• In high d, even round shape has exponentially larger bounding box

Solution: “creep up” on volume

• Assume P contains small sphere, radius r1

• Consider sequence of spheres S1, S2, . . . , Sk growing by 1 + 1/d radii (so volume ratio
constant)
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• Estimate ratio of S1 ∩ P to S2 ∩ P etc

• multiply estimates; errors multiple (1 + ε/n)n

• At each step, need to random sample from Si ∩ P

• Sample method: random walk forbidden to leave Si ∩ P

• eigenvalues show rapid mixing

Coupling:

Method

• Run two copies of Markov chain Xt, Yt

• Each considered in isolation is a copy of MC (that is, both have MC distribution)

• but they are not independent: they make dependent choices at each step

• in fact, after a while they are almost certainly the same

• Start Yt in stationary distribution, Xt anywhere

• Coupling argument:

Pr[Xt = j] = Pr[Xt = j | Xt = Yt] Pr[Xt = Yt] + Pr[Xt = j | Xt 6= Yt] Pr[Xt 6= Yt]

= Pr[Yt = j] Pr[Xt = Yt] + εPr[Xt = j | Xt 6= Yt]

So just need to make ε (which is r.p.d.) small enough.

n-bit Hypercube walk: at each step, flip random bit to random value

• At step t, pick a random bit b, random value v

• both chains set but b to value v

• after O(n log n) steps, probably all bits mathched.

Counting k colorings when k > 2∆ + 1

• The reduction from (approximate) uniform generation

– compute ratio of coloring of G to coloring of G− e
– Recurse counting G− e colorings

– Base case kn colorings of empty graph

• Bounding the ratio:

– note G− e colorings outnumber G colorings

– By how much? Let L colorings in difference (u and v same color)

5



– to make an L coloring a G coloring, change u to one of k−∆ = ∆ + 1 legal colors

– Each G-coloring arises at most one way from this

– So each L coloring has at least ∆ + 1 neighbors unique to them

– So L is 1/(∆ + 1) fraction of G.

• The chain:

– Pick random vertex, random color, try to recolor

– loops, so aperiodic

– Chain is time-reversible, so uniform distribution.

• Coupling:

– choose random vertex v (same for both)

– based on Xt and Yt, choose bijection of colors

– choose random color c

– apply c to v in Xt (if can), g(c) to v in Yt (if can).

– What bijection?

∗ Let A be vertices that agree in color, D that disagree.

∗ if v ∈ D, let g be identity

∗ if v ∈ A, let N be neighbors of v

∗ let CX be colors that N has in X but not Y (X can’t use them at v)

∗ let CY similar, wlog larger than CX

∗ g should swap each CX with some CY , leave other colors fixed. Result: if
X doesn’t change, Y doesn’t

• Convergence:

– Let d′(v) be number of neighbors of v in opposite set, so∑
v∈A

d′(v) =
∑
v∈D

d′(v) = m′

– Let δ = |D|
– Note at each step, δ changes by 0,±1

– When does it increase?

∗ v must be in A, but move to D

∗ happens if only one MC accepts new color

∗ If c not in CX or CY , then g(c) = c and both change

∗ If c ∈ CX , then g(c) ∈ CY so neither moves

∗ So must have c ∈ CY
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∗ But |CY | ≤ d′(v), so probability this happens is∑
v∈A

1

n
· d
′(v)

k
=
m′

kn

– When does it decrease?

∗ must have v ∈ D, only one moves

∗ sufficient that pick color not in either neighborhood of v,

∗ total neighborhood size 2∆, but that counts the d′(v) elements of A twice.

∗ so Prob. ∑
v∈D

1

n
· k − (2∆− d′(v))

k
=
k − 2∆

kn
δ +

m′

kn

– Deduce that expected change in δ is difference of above, namely

−k − 2∆

kn
δ = −aδ.

– So after t steps, E[δt] ≤ (1− a)tδ0 ≤ (1− a)tn.

– Thus, probability δ > 0 at most (1− a)tn.

– But now note a > 1/n2, so n2 log n steps reduce to one over polynomial chance.

Note: couple depends on state, but who cares

• From worm’s eye view, each chain is random walk

• so, all arguments hold

Expander Walks

Another example and application: (n, d, c)-Expanders.

• bipartite

• n vertices, regular degree d

• |Γ(S)| ≥ (1 + c(1− 2|S|/n))|S|

• factor c more neighbors, at least until S near n/2.

• Add self loops (with probability 1/2 to deal with periodicity.

• What is stationary distribution? Uniform.

• Intuition on convergence: because neighborhoods grow, position becomes unpredictable
very fast.
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• Theorem:

λ2 ≤ 1− c2

d(2048 + 4c2)

• Converse theorem: if λ2 ≤ 1− ε, get expander with

c ≥ 4(ε− ε2)

Gabber-Galil expanders:

• Do expanders exist? Yes! proof: probabilistic method.

• But in this case, can do better deterministically.

– Gabber Galil expanders.

– Let n = 2m2. Vertices are (x, y) where x, y ∈ Zm (one set per side)

– 5 neighbors: (x, y), (x, x+ y), (x, x+ y+ 1), (x+ y, y), (x+ y+ 1, y) (add mod m)

– or 7 neighbors of similar form.

• Theorem: this d = 5 graph has c = (2−
√

3)/4, degree 7 has twice the expansion.

• in other words, c and d are constant.

• meaning λ2 = 1− ε for some constant ε

• So random walks on this expander mix very fast: for polynomially small r.p.d., O(log n)
steps of random walk suffice.

• Note also that n can be huge, since only need to store one vertex (O(log n) bits).

Application: conserving randomness.

• Consider an BPP algorithm (gives right answer with probability 99/100 (constant
irrelevant) using n bits.

• t independent trials with majority rule reduce failure probability to 2−O(t) (chernoff),
but need tn bits

• in case of RP , used 2-point sampling to get error O(1/t) with 2n bits and t trials.

• Use walk instead.

– vertices are N = 2n (n-bit) random strings for algorithm.

– edges as degree-7 expander

– only 1/100 of vertices are bad.

– what is probability majority of time spent there?

– in limit, spend 1/100 of time there

– how fast converge to limit? How long must we run?
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– Power the markov chain so λβ2 ≤ 1/10 (constant number of steps)

– use random seeds encountered every β steps.

• number of bits needed:

– O(n) for stationary starting point

– 3β more per trial,

• Theorem: after 7k samples, probability majority wrong is 1/2k. So error 1/2n with
O(n) bits!

– Let B be powered transition matrix

– let p(i) be distribution of sample i, namely p0Bi

– Let W be indicator matrix for good witnesses, namely 1 at diagonal i if i is a
witness. W completmentary set I −W .

– ‖piW‖1 is probability pi is witness set. similar for nonwitness.

– Consider a sequence of 7k results “witness or not”

– represent as matrices S = (S1, . . . , S7k) ∈ {W,W}7k

– claim
Pr[S] = ‖p(0)(BS1)(BS2) · · · (BS7k)‖1.

– defer: ‖pBW‖2 ≤ ‖p‖2 and ‖pBW‖2 ≤ 1
5
‖p‖2

– deduce if more than 7k/2 bad witnesses,

‖p0
∏

BSi‖1 ≤
√
N‖p0

∏
BSi‖

≤
√
N(

1

5
)7k/2‖p0‖

≤ = (
1

5
)7k/2

– At same time, only 27k bad sequences, so error prob. 27k5−7k/2 ≤ 2−k

• proof of lemma:

– write p =
∑
ciei

– obviously ‖pBW‖ ≤ ‖pW‖ since W jiust zeros some stuff out.

– write p = π + y as before where y · π = 0

– argue that ‖πBW‖ ≤ ‖π‖/10 and yBW‖ ≤ ‖y‖/10, done.

– First π:

∗ recall πB = π is uniform vector, all coords 1/
√
N

∗ W has only 1/100 of coordintes nonzero, so

∗ ‖e1W‖ =
√

(N/100)(1/N) = 1/10

– Now y: just note ‖yB‖ ≤ ‖y‖/10 since λ2 ≤ 1/10. Then W zeros out.

– summary: π part unlikely to be in witness set, y part unlikely to be relevant.
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