Markov Chains for Sampling

Sampling:

- Given complex state space
- Want to sample from it
- Use some Markov Chain
- Run for a long time
- end up "near" stationary distribution
- Reduces sampling to local moves (easier)
- no need for global description of state space
- Allows sample from exponential state space

Formalize: what is "near" and "long time"?

- Stationary distribution π
- arbitrary distribution q
- relative pointwise distance (r.p.d.) $\max_j |q_j \pi_j|/\pi_j$
- Intuitively close.
- Formally, suppose r.p.d. δ .
- Then $(1 \delta)\pi \le q$
- So can express distribution q as "with probability 1δ , sample from π . Else, do something wierd.
- So if δ small, "as if" sampling from π each time.
- If δ poly small, can do poly samples without go of
- Gives "almost stationary" sample from Markov Chain
- Mixing Time: time to reduce r.p.d to some ϵ

Volume

Outline:

- Describe problem. Membership oracle
- $\sharp P$ hard to volume intersection of half spaces in n dimensions
- In low dimensions, integral.
- even for convex bodies, can't do better than $(n/\log n))^n$ ratio
- what about FPRAS?

Estimating π :

- pick random in unit square
- check if in circle
- gives ratio of square to circle
- Extends to arbitrary shape with "membership oracle"
- Problem: rare events.
- Circle has good easy outer box

Problem: rare events:

- In 2d, long skinny shapes
- In high d, even round shape has exponentially larger bounding box

Solution: "creep up" on volume

- modify P to contain unit sphere $B_1 r_1$, contined in larger B_2 of radius r, r polynomial
- choose ρ near 1 1/d.
- Consider sequence of bodies $\rho^i r P \cap B_2$
- note for large i, get P
- but for i = 0, body contains B_2
- so volume known
- so just need ratios
- At each step, need to random sample from $\rho^i r P \cap B_2$
- Sample method: random walk forbidden to leave
- eigenvalues show rapid mixing
- egienvalues small because body convex: no bottlenecks

Expander Walks

omitted

Another example and application: (n, d, c)-Expanders.

- bipartite
- n vertices, regular degree d
- $|\Gamma(S)| \ge (1 + c(1 2|S|/n))|S|$
- factor c more neighbors, at least until S near n/2.
- Add self loops (with probability 1/2 to deal with periodicity.
- What is stationary distribution? Uniform.
- Intuition on convergence: because neighborhoods grow, position becomes unpredictable very fast.
- Theorem:

$$\lambda_2 \le 1 - \frac{c^2}{d(2048 + 4c^2)}$$

• Converse theorem: if $\lambda_2 \leq 1 - \epsilon$, get expander with

$$c \ge 4(\epsilon - \epsilon^2)$$

Gabber-Galil expanders:

- Do expanders exist? Yes! proof: probabilistic method.
- But in this case, can do better deterministically.
 - Gabber Galil expanders.
 - Let $n = 2m^2$. Vertices are (x, y) where $x, y \in Z_m$ (one set per side)
 - 5 neighbors: (x, y), (x, x+y), (x, x+y+1), (x+y, y), (x+y+1, y) (add mod m)
 - or 7 neighbors of similar form.
- Theorem: this d = 5 graph has $c = (2 \sqrt{3})/4$, degree 7 has twice the expansion.
- in other words, c and d are constant.
- meaning $\lambda_2 = 1 \epsilon$ for some **constant** ϵ
- So random walks on this expander mix *very* fast: for polynomially small r.p.d., $O(\log n)$ steps of random walk suffice.
- Note also that n can be huge, since only need to store one vertex $(O(\log n) \text{ bits})$.

Application: conserving randomness.

- Consider an BPP algorithm (gives right answer with probability 99/100 (constant irrelevant) using n bits.
- t independent trials with majority rule reduce failure probability to $2^{-O(t)}$ (chernoff), but need tn bits
- in case of RP, used 2-point sampling to get error O(1/t) with 2n bits and t trials.
- Use walk instead.
 - vertices are $N = 2^n$ (*n*-bit) random strings for algorithm.
 - edges as degree-7 expander
 - only 1/100 of vertices are bad.
 - what is probability majority of time spent there?
 - in limit, spend 1/100 of time there
 - how fast converge to limit? How long must we run?
 - Power the markov chain so $\lambda_2^{\beta} \leq 1/10$ (constant number of steps)
 - use random seeds encountered every β steps.
- number of bits needed:
 - -O(n) for stationary starting point
 - -3β more per trial,
- Theorem: after 7k samples, probability majority wrong is $1/2^k$. So error $1/2^n$ with O(n) bits!
 - Let *B* be powered transition matrix
 - let $p^{(i)}$ be distribution of sample *i*, namely $p^0 B^i$
 - Let W be indicator **matrix** for good witnesses, namely 1 at diagonal i if i is a witness. \overline{W} completementary set I W.
 - $\|p^i W\|_1$ is probability p^i is witness set. similar for nonwitness.
 - Consider a sequence of 7k results "witness or not"
 - represent as matrices $S = (S_1, \ldots, S_{7k}) \in \{W, \overline{W}\}^{7k}$
 - claim

$$\Pr[S] = \|p^{(0)}(BS_1)(BS_2)\cdots(BS_{7k})\|_1$$

(sums prob. of paths through correct sequence of witness/nonwitness)

- defer: $||pBW||_2 \le ||p||_2$ and $||pB\overline{W}||_2 \le \frac{1}{5}||p||_2$

- deduce if more than 7k/2 bad witnesses,

$$|p^{0} \prod BS_{i}||_{1} \leq \sqrt{N} ||p^{0} \prod BS_{i}||$$
$$\leq \sqrt{N} (\frac{1}{5})^{7k/2} ||p^{0}||$$
$$\leq = (\frac{1}{5})^{7k/2}$$

– At same time, only 2^{7k} bad sequences, so error prob. $2^{7k}5^{-7k/2} \le 2^{-k}$

- proof of lemma:
 - write $p = \sum c_i e_i$
 - obviously $||pBW|| \le ||pW||$ since W just zeros some stuff out.
 - write $p = \pi + y$ as before where $y \cdot \pi = 0$
 - argue that $\|\pi B\overline{W}\| \leq \|\pi\|/10$ and $yB\overline{W}\| \leq \|y\|/10$, done.
 - First π :
 - * recall $\pi B = \pi$ is uniform vector, all coords $1/\sqrt{N}$
 - * \overline{W} has only 1/100 of coordinates nonzero, so
 - * $||e_1\overline{W}|| = \sqrt{(N/100)(1/N)} = 1/10$
 - Now y: just note $||yB|| \leq ||y||/10$ since $\lambda_2 \leq 1/10$. Then \overline{W} zeros out.
 - summary: π part unlikely to be in witness set, y part unlikely to be relevant.

Coupling:

Method

- Run two copies of Markov chain X_t, Y_t
- Each considered in isolation is a copy of MC (that is, both have MC distribution)
- but they are not independent: they make dependent choices at each step
- in fact, after a while they are almost certainly the same
- Start Y_t in stationary distribution, X_t anywhere
- Coupling argument:

$$\Pr[X_t = j] = \Pr[X_t = j \mid X_t = Y_t] \Pr[X_t = Y_t] + \Pr[X_t = j \mid X_t \neq Y_t] \Pr[X_t \neq Y_t] \\ = \Pr[Y_t = j] \Pr[X_t = Y_t] + \epsilon \Pr[X_t = j \mid X_t \neq Y_t]$$

So just need to make ϵ (which is r.p.d.) small enough.

n-bit Hypercube walk: at each step, flip random bit to random value

- At step t, pick a random bit b, random value v
- both chains set but b to value v
- after $O(n \log n)$ steps, probably all bits matched.

Counting k colorings when $k > 2\Delta + 1$

- The reduction from (approximate) uniform generation
 - compute ratio of coloring of G to coloring of G e
 - Recurse counting G e colorings
 - Base case k^n colorings of empty graph
- Bounding the ratio:
 - note G e colorings outnumber G colorings
 - By how much? Let L colorings in difference (u and v same color)
 - to make an L coloring a G coloring, change u to one of $k \Delta = \Delta + 1$ legal colors
 - Each *G*-coloring arises at most one way from this
 - So each L coloring has at least $\Delta + 1$ neighbors unique to them
 - So L is $1/(\Delta + 1)$ fraction of G.
 - So can estimate ratio with few samples
- The chain:
 - Pick random vertex, random color, try to recolor
 - loops, so aperiodic
 - Chain is time-reversible, so uniform distribution.
- Coupling:
 - choose random vertex v (same for both)
 - based on X_t and Y_t , choose bijection of colors
 - choose random color c
 - apply c to v in X_t (if can), g(c) to v in Y_t (if can).
 - What bijection?
 - * Let A be vertices that agree in color, D that disagree.
 - * if $v \in D$, let g be identity
 - * if $v \in A$, let N be neighbors of v
 - * let C_X be colors that N has in X but not Y (X can't use them at v)
 - * let C_Y similar, wlog larger than C_X

- * g should swap each C_X with some C_Y , leave other colors fixed. **Result:** if X doesn't change, Y doesn't
- Convergence:
 - Let d'(v) be number of neighbors of v in opposite set, so

$$\sum_{v \in A} d'(v) = \sum_{v \in D} d'(v) = m'$$

- Let $\delta = |D|$
- Note at each step, δ changes by $0, \pm 1$
- When does it increase?
 - * v must be in A, but move to D
 - * happens if only one MC accepts new color
 - * If c not in C_X or C_Y , then g(c) = c and both change
 - * If $c \in C_X$, then $g(c) \in C_Y$ so neither moves
 - * So must have $c \in C_Y$
 - * But $|C_Y| \leq d'(v)$, so probability this happens is

$$\sum_{v \in A} \frac{1}{n} \cdot \frac{d'(v)}{k} = \frac{m'}{kn}$$

- When does it decrease?
 - * must have $v \in D$, only one moves
 - * sufficient that pick color not in either neighborhood of v,
 - * total neighborhood size 2Δ , but that counts the d'(v) elements of A twice. * so Prob.

$$\sum_{v \in D} \frac{1}{n} \cdot \frac{k - (2\Delta - d'(v))}{k} = \frac{k - 2\Delta}{kn}\delta + \frac{m'}{kn}$$

- Deduce that expected *change* in δ is difference of above, namely

$$-\frac{k-2\Delta}{kn}\delta = -a\delta.$$

- So after t steps, $E[\delta_t] \leq (1-a)^t \delta_0 \leq (1-a)^t n$.
- Thus, probability $\delta > 0$ at most $(1-a)^t n$.
- But now note $a > 1/n^2$, so $n^2 \log n$ steps reduce to one over polynomial chance.

Note: couple depends on state, but who cares

- From worm's eye view, each chain is random walk
- so, all arguments hold

Counting vs. generating:

- we showed that by generating, can count
- by counting, can generate: