Maximal independent set

trivial sequential algorithm

- inherently sequential
- from node point of view: each thinks can join MIS if others stay out
- randomization breaks this symmetry

Randomized idea

- each node joins with some probability
- all neighbors excluded
- many nodes join
- few phases needed

Algorithm:

- all degree 0 nodes join
- node v joins with probability $1 / 2 d(v)$
- if edge (u, v) has both ends marked, unmark lower degree vertex
- put all marked nodes in IS
- delete all neighbors

Intuition: d-regular graph

- vertex vanishes if it or neighbor gets chosen
- mark with probability $1 / 2 d$
- prob (no neighbor marked) is $(1-1 / 2 d)^{d}$, constant
- so const prob. of neighbor of v marked-destroys v
- const fraction of neighbors vanish: $O(\log n)$ iters
- what about unmarking?
- prob(unmarking forced) only constant.
- So just changes constants

Implementing a phase trivial in $O(\log n)$.
Prob chosen for IS, given marked, exceeds $1 / 2$

- suppose w marked. only unmarked if higher degree neighbor marked
- higher degree neighbor marked with prob. $\leq 1 / 2 d(w)$
- only $d(w)$ neighbors
- prob. any marked at most $1 / 2$.
- deduce prob. good vertex killed exceeds $\left(1-e^{-1 / 6}\right) / 2$

Good vertices

- good: at least $1 / 3$ neighbors have lower degree
- prob. no neighbor of good marked $\leq(1-1 / 2 d(v))^{d(v) / 3} \leq e^{-1 / 6}$.

Good edges

- any edge with a good neighbor
- has const prob. to vanish
- show half edges good
- deduce $O(\log n)$ iterations.

Proof

- Let V_{B} be bad vertices; we count edges with both ends in V_{B}.
- direct edges from lower to higher degree d_{i} is indegree, d_{o} outdegree
- if $v \mathrm{bad}$, then $d_{i}(v) \leq d(v) / 3$
- deduce

$$
\sum_{V_{B}} d_{i}(v) \leq \frac{1}{3} \sum_{V_{B}} d(v)=\frac{1}{3} \sum_{V_{B}}\left(d_{i}(v)+d_{o}(v)\right)
$$

- so $\sum_{V_{B}} d_{i}(v) \leq \frac{1}{2} \sum_{V_{B}} d_{o}(v)$
- which means indegree can only "catch" half of outdegree; other half must go to good vertices.
- more carefully,
$-d_{o}(v)-d_{i}(v) \geq \frac{1}{3}(d(v))=\frac{1}{3}\left(d_{o}(v)+d_{i}(v)\right)$.
- Let V_{G}, V_{B} be good, bad vertices
- degree of bad vertices is

$$
\begin{aligned}
2 e\left(V_{B}, V_{B}\right)+e\left(V_{B}, V_{G}\right)+e\left(V_{G}, V_{B}\right) & =\sum_{v \in V_{B}} d_{o}(v)+d_{i}(v) \\
& \leq 3 \sum\left(d_{o}(v)-d_{i}(v)\right) \\
& =3\left(e\left(V_{B}, V_{G}\right)-e\left(V_{G}, V_{B}\right)\right) \\
& \leq 3\left(e\left(V_{B}, V_{G}\right)+e\left(V_{G}, V_{B}\right)\right.
\end{aligned}
$$

Deduce $e\left(V_{B}, V_{B}\right) \leq e\left(V_{B}, V_{G}\right)+e\left(V_{G}, V_{B}\right)$. result follows.

Derandomization:

- Analysis focuses on edges,
- so unsurprisingly, pairwise independence sufficient
- not immediately obvious, but again consider d-uniform case
- prob vertex marked $1 / 2 d$
- neighbors $1, \ldots, d$ in increasing degree order
- Let E_{i} be event that i is marked.
- Let E_{i}^{\prime} be E_{i} but no E_{j} for $j<i$
- A_{i} event no neighbor of i chosen
- Then prob eliminate v at least

$$
\begin{aligned}
\sum \operatorname{Pr}\left[E_{i}^{\prime} \cap A_{i}\right] & =\sum \operatorname{Pr}\left[E_{i}^{\prime}\right] \operatorname{Pr}\left[A_{i} \mid E_{i}^{\prime}\right] \\
& \geq \sum \operatorname{Pr}\left[E_{i}^{\prime}\right] \operatorname{Pr}\left[A_{i}\right]
\end{aligned}
$$

- Wait: show $\operatorname{Pr}\left[A_{i} \mid E_{i}^{\prime}\right] \geq \operatorname{Pr}\left[A_{i}\right]$
- true if independent
- measure $\operatorname{Pr}\left[\neg A_{i} \mid E_{i}^{\prime}\right] \leq \sum \operatorname{Pr}\left[E_{w} \mid E_{i}^{\prime}\right]$
- measure

$$
\begin{aligned}
\operatorname{Pr}\left[E_{w} \mid E_{i}^{\prime}\right] & =\frac{\operatorname{Pr}\left[E_{w} \cap E^{\prime}\right]}{\operatorname{Pr}\left[E_{i}^{\prime}\right]} \\
& =\frac{\operatorname{Pr}\left[E_{w} \cap \neg E_{1} \cap \cdots \mid E_{i}\right]}{\operatorname{Pr}\left[\neg E_{1} \cap \cdots \mid E_{i}\right]} \\
& \leq \frac{\operatorname{Pr}\left[E_{w} \mid E_{j}\right]}{1-\sum \operatorname{Pr}\left[E_{j} \mid E_{i}\right]} \\
& =\Theta\left(\operatorname{Pr}\left[E_{i}\right]\right)
\end{aligned}
$$

- But expected marked neighbors $1 / 2$, so by Markov $\operatorname{Pr}\left[A_{i}\right]>1 / 2$
- so prob eliminate v exceeds $\sum \operatorname{Pr}\left[E_{i}^{\prime}\right]=\operatorname{Pr}\left[\cup E_{i}\right]$
- lower bound as $\sum \operatorname{Pr}\left[E_{i}\right]-\sum \operatorname{Pr}\left[E_{i} \cap E_{j}\right]=1 / 2-d(d-1) / 8 d^{2}>1 / 4$
- so $1 / 2 d$ prob. v marked but no neighbor marked, so v chosen
- Generate pairwise independent with $O(\log n)$ bits
- try all polynomial seeds in parallel
- one works
- gives deterministic $N C$ algorithm
with care, $O(m)$ processors and $O(\log n)$ time (randomized) LFMIS P-complete.

Perfect Matching

We focus on bipartite; book does general case.
Detecting one easy in $\mathcal{N C}$:

- Tutte matrix
- Determinant nonzero iff PM
- Replace vars with values $1, \ldots, 2^{m}$, same holds
- Matrixu Mul, Determinant in $\mathcal{N C}$
- Wait: big numbers?
- Who cares: poly bits, $N C$ to multiply etc

How about finding one?

- If unique, no problem
- Remove each edge, see if still PM in parallel
- multiplies processors by m
- still $N C$
- generalizes to polynomial number of matchings

Idea:

- make unique minimum weight perfect matching
- find it

Isolating lemma:

- Family of distinct sets over x_{1}, \ldots, x_{m}
- assign random weights in $1, \ldots, 2 m$
- Pr (unique min-weight set) $\geq 1 / 2$
- Odd: no dependence on number of sets!
- (of course $<2^{m}$)

Proof:

- Fix item x_{i}
- Y is min-sets containing x_{i}
- N is min-sets no containing x_{i}
- true min-sets are either those in Y or in N
- how decide? Value of x_{i}
- For $x_{i}=-\infty$, min-sets are Y
- For $x_{i}=+\infty$, min-sets are N
- As increase from $-\infty$ to ∞, single transition value when both X and Y are min-weight
- If only Y min-weight, then x_{i} in every min-set
- If only X min-weight, then x_{i} in no min-set
- If both min-weight, x_{i} is ambiguous
- Suppose no x_{i} ambiguous. Then min-weight set unique!
- Exactly one value for x_{i} makes it ambiguous given remainder
- So $\operatorname{pr}($ ambiguous $) 1 / 2 m$
- So $\operatorname{pr}($ any ambiguous $)<m / 2 m=1 / 2$

Usage:

- Consider tutte matrix A
- Assign random value $2^{w_{i}}$ to x_{i}, with $w_{i} \in 1, \ldots, 2 m$
- Weight of matching is $2^{\sum w_{i}}$
- Let W be minimum sum
- Unique w/pr $1 / 2$
- If so, determinant is odd multiple of 2^{W}
- Try removing edges one at a time
- Edge in PM iff new determinant $/ 2^{W}$ is odd.
$N C$ algorithm open.
For exact matching, P algorithm open.

Upcoming

Vempala: "An Eye for Elegance"

- More markov chains
- convex volume estimation
- geometric embeddings
- 11-12:30

Joel Spencer

- 9:30-11
- Probabilstic method
- List of people who took it last time

Spielman advanced complexity
Next year: advanced algorithms.
Bring your research problems

