Maximal independent set

trivial sequential algorithm

- inherently sequential
- from node point of view: each thinks can join MIS if others stay out
- randomization breaks this symmetry

Randomized idea

- each node joins with some probability
- all neighbors excluded
- many nodes join
- few phases needed

Algorithm:

- all degree 0 nodes join
- node v joins with probability 1/2d(v)
- if edge (u, v) has both ends marked, unmark lower degree vertex
- put all marked nodes in IS
- delete all neighbors

Intuition: *d*-regular graph

- vertex vanishes if it or neighbor gets chosen
- mark with probability 1/2d
- prob (no neighbor marked) is $(1 1/2d)^d$, constant
- so const prob. of neighbor of v marked—destroys v
- const fraction of neighbors vanish: $O(\log n)$ iters
- what about unmarking?
- prob(unmarking forced) only constant.
- So just changes constants

Implementing a phase trivial in $O(\log n)$. Prob chosen for IS, given marked, exceeds 1/2

• suppose w marked. only unmarked if higher degree neighbor marked

- higher degree neighbor marked with prob. $\leq 1/2d(w)$
- only d(w) neighbors
- prob. any marked at most 1/2.
- deduce prob. good vertex killed exceeds $(1 e^{-1/6})/2$

Good vertices

- good: at least 1/3 neighbors have lower degree
- prob. no neighbor of good marked $\leq (1 1/2d(v))^{d(v)/3} \leq e^{-1/6}$.

Good edges

- any edge with a good neighbor
- has const prob. to vanish
- show half edges good
- deduce $O(\log n)$ iterations.

Proof

- Let V_B be bad vertices; we count edges with both ends in V_B .
- direct edges from lower to higher degree d_i is indegree, d_o outdegree
- if v bad, then $d_i(v) \le d(v)/3$
- deduce

$$\sum_{V_B} d_i(v) \le \frac{1}{3} \sum_{V_B} d(v) = \frac{1}{3} \sum_{V_B} (d_i(v) + d_o(v))$$

- so $\sum_{V_B} d_i(v) \le \frac{1}{2} \sum_{V_B} d_o(v)$
- which means indegree can only "catch" half of outdegree; other half must go to good vertices.
- more carefully,

$$- d_o(v) - d_i(v) \ge \frac{1}{3}(d(v)) = \frac{1}{3}(d_o(v) + d_i(v)).$$

- Let V_G, V_B be good, bad vertices
- degree of bad vertices is

$$2e(V_B, V_B) + e(V_B, V_G) + e(V_G, V_B) = \sum_{v \in V_B} d_o(v) + d_i(v)$$

$$\leq 3\sum_{v \in V_B} (d_o(v) - d_i(v))$$

$$= 3(e(V_B, V_G) - e(V_G, V_B))$$

$$\leq 3(e(V_B, V_G) + e(V_G, V_B))$$

Deduce $e(V_B, V_B) \leq e(V_B, V_G) + e(V_G, V_B)$. result follows.

Derandomization:

- Analysis focuses on edges,
- so unsurprisingly, pairwise independence sufficient
- not immediately obvious, but again consider *d*-uniform case
- prob vertex marked 1/2d
- neighbors $1, \ldots, d$ in increasing degree order
- Let E_i be event that i is marked.
- Let E'_i be E_i but no E_j for j < i
- A_i event no neighbor of *i* chosen
- Then prob eliminate v at least

$$\sum \Pr[E'_i \cap A_i] = \sum \Pr[E'_i] \Pr[A_i \mid E'_i]$$

$$\geq \sum \Pr[E'_i] \Pr[A_i]$$

- Wait: show $\Pr[A_i \mid E'_i] \ge \Pr[A_i]$
 - true if independent
 - measure $\Pr[\neg A_i \mid E'_i] \leq \sum \Pr[E_w \mid E'_i]$
 - measure

$$\Pr[E_w \mid E'_i] = \frac{\Pr[E_w \cap E']}{\Pr[E'_i]}$$
$$= \frac{\Pr[E_w \cap \neg E_1 \cap \cdots \mid E_i]}{\Pr[\neg E_1 \cap \cdots \mid E_i]}$$
$$\leq \frac{\Pr[E_w \mid E_j]}{1 - \sum \Pr[E_j \mid E_i]}$$
$$= \Theta(\Pr[E_i])$$

- But expected marked neighbors 1/2, so by Markov $\Pr[A_i] > 1/2$
- so prob eliminate v exceeds $\sum \Pr[E'_i] = \Pr[\cup E_i]$
- lower bound as $\sum \Pr[E_i] \sum \Pr[E_i \cap E_j] = 1/2 d(d-1)/8d^2 > 1/4$
- so 1/2d prob. v marked but no neighbor marked, so v chosen
- Generate pairwise independent with $O(\log n)$ bits
- try all polynomial seeds in parallel

- one works
- gives deterministic NC algorithm

with care, O(m) processors and $O(\log n)$ time (randomized) LFMIS P-complete.

Perfect Matching

We focus on bipartite; book does general case. Detecting one easy in \mathcal{NC} :

- Tutte matrix
- Determinant nonzero iff PM
- Replace vars with values $1, \ldots, 2^m$, same holds
- Matrixu Mul, Determinant in \mathcal{NC}
- Wait: big numbers?
- Who cares: poly bits, NC to multiply etc

How about finding one?

- If unique, no problem
- Remove each edge, see if still PM in parallel
- multiplies processors by m
- still NC
- generalizes to polynomial number of matchings

Idea:

- make unique minimum weight perfect matching
- find it

Isolating lemma:

- Family of distinct sets over x_1, \ldots, x_m
- assign random weights in $1, \ldots, 2m$
- $Pr(unique min-weight set) \ge 1/2$
- Odd: no dependence on number of sets!
- (of course $< 2^m$)

Proof:

- Fix item x_i
- Y is min-sets containing x_i
- N is min-sets no containing x_i
- true min-sets are either those in Y or in N
- how decide? Value of x_i
- For $x_i = -\infty$, min-sets are Y
- For $x_i = +\infty$, min-sets are N
- As increase from $-\infty$ to ∞ , single transition value when both X and Y are min-weight
- If only Y min-weight, then x_i in every min-set
- If only X min-weight, then x_i in no min-set
- If both min-weight, x_i is *ambiguous*
- Suppose no x_i ambiguous. Then min-weight set unique!
- Exactly one value for x_i makes it ambiguous given remainder
- So pr(ambiguous)1/2m
- So pr(any ambiguous) < m/2m = 1/2

Usage:

- Consider tutte matrix A
- Assign random value 2^{w_i} to x_i , with $w_i \in 1, \ldots, 2m$
- Weight of matching is $2^{\sum w_i}$
- Let W be minimum sum
- Unique w/pr 1/2
- If so, determinant is odd multiple of 2^W
- Try removing edges one at a time
- Edge in PM iff new determinant/ 2^W is odd.

NC algorithm open. For exact matching, P algorithm open.

Upcoming

Vempala: "An Eye for Elegance"

- More markov chains
- convex volume estimation
- geometric embeddings
- 11-12:30

Joel Spencer

- 9:30-11
- Probabilstic method
- List of people who took it last time

Spielman advanced complexity Next year: advanced algorithms. Bring your research problems