Intro

This lecture will review everything you learned in 6.042.

- Basic tools in probability
- Expectations
- High probability events
- Deviations from expectation

Coupon collecting.

- n coupon types. Get a random one each round. How long to get all coupons?
- general example of waiting for combinations of events to happen.
- expected case analysis:
- after get k coupons, each sample has $1-k / n$ chance for new coupon
- so wait for $(k+1)^{\text {st }}$ coupon has geometric distribution.
- expected value of geo dist $\mathrm{w} / \operatorname{param} p$ is $1 / p$
- so get harmonic sum
- what standard tools did we use? using conditional expectation to study on phase; used linearity of expectation to add
- expected time for all coupons: $n \ln n+O(n)$.

Stable Marriage

Problem:

- complete preference lists
- stable if no two unmarried (to each other) people prefer each other.
- med school
- always exists.

Proof by proposal algorithm:

- rank men arbitrarily
- lowest unmarried man proposes in order of preference
- woman accepts if unmarried or prefers new proposal to current mate.

Time Analysis:

- woman's state only improves with time
- only n improvements per woman
- while unattached man, proposals continue
- (some woman available, since every woman he proposed to is married now)
- must eventually all be attached

Stability Analysis

- suppose $X-y$ are dissatisfied with pairing $X-x, Y-y$.
- X proposed to y first
- y prefers current Y to X.

Average case analysis

- nonstandard for our course
- random preference lists
- how many proposals?
- principle of deferred decisions
- used intuitively already
- random choices all made in advance
- random choices made algorithm needs them.
- used while discussing autopartition, quicksort
- Proposal algorithm:
- each proposal is random among unchosen women
- still hard
- Each proposal among all women
- stochastic domination: X s.d. Y when $\operatorname{Pr}[X>z] \geq \operatorname{Pr}[Y>z]$ for all z.
- done when all women get a proposal.
- at each step $1 / n$ chance women gts proposal
- This is just coupon collection: $O(n \log n)$

Deviations from Expectation

Sometimes expectation isn't enough. Want to study deviations - probability and magnitude of deviation from expectation.
Example: balls in bins:

- n balls in n bins
- Expected balls per bin: 1 (not very interesting)
- What is max balls we expect to see in a bin?
- Start by bounding probability of many balls

$$
\begin{aligned}
\operatorname{Pr}[k \text { balls in bin } 1] & =\binom{n}{k}(1 / n)^{k}(1-1 / n)^{n-k} \\
& \leq\binom{ n}{k}(1 / n)^{k} \\
& \leq\left(\frac{n e}{k}\right)^{k}(1 / n)^{k} \\
& =\left(\frac{e}{k}\right)^{k}
\end{aligned}
$$

- So prob at least k balls is $\sum_{j \geq k}(e / j)^{j}=O\left((e / k)^{k}\right)$ (geometric series)
- $\leq 1 / n^{2}$ if $k>(e \ln n) / \ln \ln n$
- What is probability any bin is over k ? $1 / n$ union bound.
- Now can bound expected max:
- With probability $1-1 / n$, max is $O(\ln n / \ln \ln n)$.
- With probability $1 / n$, max is bigger, but at most n
- So, expected max $O(\ln n / \ln \ln n)$
- Typical approach: small expectation as small "common case" plus large "rare case"

Example: coupon collection/stable marriage.

- Probability didn't get $k^{t h}$ coupon after r rounds is $(1-1 / n)^{r} \leq e^{-r / n}$
- which is $n^{-\beta}$ for $r=\beta n \ln n$
- so probability didn't get some coupon is at msot $n \cdot n^{-\beta}=n^{1-\beta}$ (using union bound)
- we say "time is $O(n \ln n)$ with high probability" because we can make probability $n^{-\beta}$ for any desired β by changing constant that doesn't affect assymptotic claim.
- sometime say "with high probability" when prove it for some $\beta>1$ even if didn't prove it for all.
- Saying "almost never above $O(n \ln n)$ " is a much stronger statement than saying " $O(n \ln n)$ on average."

Tail Bounds-Markov Inequality

At other times, don't want to get down and dirty with problem. So have developed set of bounding techniques that are basically problem independent.

- few assumptions, so applicable almost anywhere
- but for same reason, don't give as tight bounds
- the more you require of problem, the tighter bounds you can prove.

Markov inequality.

- $\operatorname{Pr}[Y \geq t] \leq E[Y] / t$
- $\operatorname{Pr}[Y \geq t E[Y]] \leq 1 / t$.
- Only requires an expectation! So very widely applicable.

Application: $Z P P=R P \cap c o R P$.

- If $R P \cap c o R P$
- just run both
- if neither affirms, run again
- Each iter has probability $1 / 2$ to affirm
- So expected iterations 2:
- So $Z P P$.
- If $Z P P$
- suppose expected time $T(n)$
- Run for time $2 T(n)$, then stop and give default answer
- Probability of default answer at most 1/2 (Markov)
- So, RP.
- If flip default answer, coRP

On flip side, not very strong: balls in bins $\operatorname{Pr}[>\ln n] \leq 1 / \ln n$.
Can make much stronger by generalizing: $\operatorname{Pr}[h(Y)>t] \leq E[h(Y)] / t$ for any positive h.

