
Intro

This lecture will review everything you learned in 6.042.

• Basic tools in probability

• Expectations

• High probability events

• Deviations from expectation

Coupon collecting.

• n coupon types. Get a random one each round. How long to get all coupons?

• general example of waiting for combinations of events to happen.

• expected case analysis:

– after get k coupons, each sample has 1− k/n chance for new coupon

– so wait for (k + 1)st coupon has geometric distribution.

– expected value of geo dist w/param p is 1/p

– so get harmonic sum

– what standard tools did we use? using conditional expectation to study on
phase; used linearity of expectation to add

– expected time for all coupons: n lnn+O(n).

Stable Marriage

Problem:

• complete preference lists

• stable if no two unmarried (to each other) people prefer each other.

• med school

• always exists.

Proof by proposal algorithm:

• rank men arbitrarily

• lowest unmarried man proposes in order of preference

• woman accepts if unmarried or prefers new proposal to current mate.

Time Analysis:
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• woman’s state only improves with time

• only n improvements per woman

• while unattached man, proposals continue

• (some woman available, since every woman he proposed to is married now)

• must eventually all be attached

Stability Analysis

• suppose X-y are dissatisfied with pairing X-x, Y -y.

• X proposed to y first

• y prefers current Y to X.

Average case analysis

• nonstandard for our course

• random preference lists

• how many proposals?

• principle of deferred decisions

– used intuitively already

– random choices all made in advance

– random choices made algorithm needs them.

• used while discussing autopartition, quicksort

• Proposal algorithm:

– each proposal is random among unchosen women

– still hard

– Each proposal among all women

– stochastic domination: X s.d. Y when Pr[X > z] ≥ Pr[Y > z] for all z.

– done when all women get a proposal.

– at each step 1/n chance women gts proposal

– This is just coupon collection: O(n log n)
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Deviations from Expectation

Sometimes expectation isn’t enough. Want to study deviations—probability and magni-
tude of deviation from expectation.
Example: balls in bins:

• n balls in n bins

• Expected balls per bin: 1 (not very interesting)

• What is max balls we expect to see in a bin?

• Start by bounding probability of many balls
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• So prob at least k balls is
∑

j≥k(e/j)
j = O((e/k)k) (geometric series)

• ≤ 1/n2 if k > (e lnn)/ ln lnn

• What is probability any bin is over k? 1/n union bound.

• Now can bound expected max:

– With probability 1− 1/n, max is O(lnn/ ln lnn).

– With probability 1/n, max is bigger, but at most n

– So, expected max O(lnn/ ln lnn)

• Typical approach: small expectation as small “common case” plus large “rare case”

Example: coupon collection/stable marriage.

• Probability didn’t get kth coupon after r rounds is (1− 1/n)r ≤ e−r/n

• which is n−β for r = βn lnn

• so probability didn’t get some coupon is at msot n ·n−β = n1−β (using union bound)

• we say “time is O(n lnn) with high probability” because we can make probability
n−β for any desired β by changing constant that doesn’t affect assymptotic claim.
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• sometime say “with high probability” when prove it for some β > 1 even if didn’t
prove it for all.

• Saying “almost never above O(n lnn)” is a much stronger statement than saying
“O(n lnn) on average.”

Tail Bounds—Markov Inequality

At other times, don’t want to get down and dirty with problem. So have developed set of
bounding techniques that are basically problem independent.

• few assumptions, so applicable almost anywhere

• but for same reason, don’t give as tight bounds

• the more you require of problem, the tighter bounds you can prove.

Markov inequality.

• Pr[Y ≥ t] ≤ E[Y ]/t

• Pr[Y ≥ tE[Y ]] ≤ 1/t.

• Only requires an expectation! So very widely applicable.

Application: ZPP = RP ∩ coRP .

• If RP ∩ coRP

– just run both

– if neither affirms, run again

– Each iter has probability 1/2 to affirm

– So expected iterations 2:

– So ZPP .

• If ZPP

– suppose expected time T (n)

– Run for time 2T (n), then stop and give default answer

– Probability of default answer at most 1/2 (Markov)

– So, RP .

– If flip default answer, coRP

On flip side, not very strong: balls in bins Pr[> lnn] ≤ 1/ lnn.
Can make much stronger by generalizing: Pr[h(Y ) > t] ≤ E[h(Y )]/t for any positive h.
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