Admin

Discuss collaboration.
Discuss median finding.

Median finding.

change from book. List L

- idea; random sampling
- median of sample looks like median of whole. neighborhood.
- Algorithm
- choose s samples with replacement
- take fences before and after sample median
- keep items between fences. sort.
- Analysis
- claim (i) median within fences and (ii) few items between fences.
- Without loss of generality, L contains $1, \ldots, n$.
- Samples s_{1}, \ldots, s_{m} in sorted order.
- lemma: S_{r} near $r n / s$.
* Chernoff: $\forall k$, number elements before k is $(1 \pm \epsilon) k s / n$, where $\epsilon=\sqrt{(6 n \ln n) / k s}$.
* Thus, when $k>n / 4$, error $k s / n(1 \pm \sqrt{24 \ln n / s})=k s / n(1 \pm \epsilon)$.
* $S_{(1+\epsilon) k s / n}>k$
* $S_{r}>r n / s(1+\epsilon)$
* $S_{r}<r n / s(1-\epsilon)$.
- Let $r_{0}=\frac{s}{2}(1-\epsilon)$
- Then w.h.p., $\frac{n}{2}(1-\epsilon) /(1+\epsilon)<S_{r_{0}}<n / 2$
- Let $r_{1}=\frac{s}{2}(1-\epsilon)$
- Then $S_{r_{1}}>n / 2$
- But $S_{r_{1}}-S_{r_{0}}=O(\epsilon n)$
- Number of elements to sort: s
- Set containing median: $O(\epsilon n)=O(n \sqrt{(\log n) / s})$.
- balance: $\tilde{O}\left(n^{2 / 3}\right)$ in both steps.

Randomized is strictly better:

- Optimum deterministic: $\geq(2+\epsilon) n$
- Optimum randomized: $\leq(3 / 2) n+o(n)$

Routing

- synchronous message passing
- bidirectional links, one message per step
- queues on links
- permutation routing
- oblivious algorithms only consider self packet.
- Theorem Any deterministic oblivious permutation routing requires $\Omega(\sqrt{N / d})$ steps on an N node degree d machine.
- reason: some edge has lots of paths through it.
- homework: special case
- Hypercube.
- N nodes, $n=\log _{2} N$ dimensions
- bit representation
- natural routing: bit fixing (left to right)
- paths of length n
- $N n$ edges for N length n paths
- lower bound n
- Routing algorithms:
- $O(n)=O(\log N)$ randomized
- beats $\Omega(\sqrt{N / n})$ deterministic
- how? load balance paths.
- Random destination (not permutation!), bit correction
- Average case, but a good start.
$-T\left(e_{i}\right)=$ number of paths using e_{i}
- by symmetry, all $E\left[T\left(e_{i}\right)\right]$ equal
- expected path length $n / 2$
- LOE: expected total path length $N n / 2$
- $n N$ edges in hypercube
- $E\left[T\left(e_{i}\right)\right]=1 / 2$
- Chernoff: every edge gets $\leq 3 n$ (prob $1-1 / N$)
- Naive usage:
- n phases, one per bit
- $3 n$ time per phase
- $O\left(n^{2}\right)$ total
- From intermediate destination, route back!
- routes worst case permutation in $O\left(n^{2}\right)$.
- What if don't wait for next phase?
- FIFO queuing
- total time is length plus delay
- Expected delay $\leq E\left[\sum T\left(e_{l}\right)\right]=n / 2$.
- Chernoff bound? no. dependence of $T\left(e_{i}\right)$.
- High prob. bound:
- consider paths sharing route $\left(e_{0}, \ldots, e_{k}\right)$
- Suppose S packets intersect route (use at least one of e_{i})
- claim delay $\leq|S|$
- Suppose true: Let $H_{i j}=1$ if j hits i 's (fixed) route.

$$
\begin{aligned}
E[|S|] & =E\left[\sum H_{i j}\right] \\
& \leq E\left[\sum T\left(e_{l}\right)\right] \\
& \leq n / 2
\end{aligned}
$$

- Now Chernoff does apply ($H_{i j}$ independent for fixed i-route).
$-|S|=O(n)$ w.p. $1-2^{-5 n}$, so $O(n)$ delay for all 2^{n} paths.
- Lag argument
- Exercise: once packets separate, don't rejoin
- Route for $i \rho_{i}=\left(e_{1}, \ldots, e_{k}\right)$
- charge each delay to a departure of a packet from ρ_{i}.
- Packet waiting to follow e_{j} at time t has: $\mathbf{L a g} t-j$
- Delay of v_{i} is lag crossing e_{k}
- When v_{i} delay rises to $l+1$, some packet from S has lag l (since crosses e_{j} instead of v_{i}).
- Consider last time t^{\prime} where a lag- l packet exists
* some lag-l packet w crosses $e_{j^{\prime}}$ at t^{\prime} (others increase to lag- $(l+1)$)
* w leaves at this point (if not, then l at $e_{j^{\prime}+1}$ next time)
* charge one delay to w.

