Admin

Next tuesday: holiday.

- pset due thursday
- but material done TODAY (almost)
- so start/finish early, have fun on vacation
- New pset POSTED tuesday, distributed thursday

Method of Conditional Probabilities and Expectations

Derandomization.

- Theory: is $\mathrm{P}=\mathrm{RP}$?
- practice: avoid chance of error, chance of slow.

Conditional Expectation. Max-Cut

- Imagine placing one vertex at a time.
- $x_{i}=0$ or 1 for left or right side
- $E[C]=(1 / 2) E\left[C \mid x_{1}=0\right]+(1 / 2) E\left[C \mid x_{1}=1\right]$
- Thus, either $E\left[C \mid x_{1}=0\right]$ or $E\left[C \mid X_{1}=1\right] \geq E[C]$
- Pick that one, continue
- More general, whole tree of element settings.
$-\operatorname{Let} C(a)=E[C \mid a]$.
- For node a with children $b, c, C(b)$ or $C(c) \geq C(a)$.
- By induction, get to leaf with expected value at least $E[C]$
- But no randomness left, so that is actual cut value.
- Problem: how compute node values? Easy.

Conditional Probabilities. Set balancing. (works for wires too)

- Review set-balancing Chernoff bound
- Think of setting item at a time
- Let Q be bad event (unbalanced set)
- We know $\operatorname{Pr}[Q]<1 / n$.
- $\operatorname{Pr}[Q]=1 / 2 \operatorname{Pr}\left[Q \mid x_{i 0}\right]+1 / 2 \operatorname{Pr}\left[Q \mid x_{i 1}\right]$
- Follows that one of conditional probs. less than $\operatorname{Pr}[Q]<1 / n$.
- More general, whole tree of element settings.
- Let $P(a)=\operatorname{Pr}[Q \mid a]$.
- For node a with children $b, c, P(b)$ or $P(c)<P(a)$.
$-P(r)<1$ sufficient at root r.
- at leaf $l, P(l)=0$ or 1 .
- One big problem: need to compute these probabilities!

Pessimistic Estimators.

- Alternative to computing probabilities
- three neceessary conditions:
- $\hat{P}(r)<1$
$-\min \{\hat{P}(b), \hat{P}(c)\}<\hat{P}(a)$
- \hat{P} computable

Imply can use \hat{P} instead of actual.

- Let $Q_{i}=\operatorname{Pr}[$ unbalanced set $i]$
- Let $\hat{P}(a)=\sum \operatorname{Pr}\left[Q_{b} \mid a\right]$ at tree node a
- Claim 3 conditions.
- HW
- Result: deterministic $O(\sqrt{n \ln n})$ bias.
- more sophisticated pessimistic estimator for wiring.

Oblivious routing

- recall: choose random routing. Only $1 / N$ chance of failure
- Choose N^{3} random routines.
- whp, for every permutation, at most $2 N^{2}$ bad routes.
- given the N^{3} routes, pick one at random.
- so for any permutation, prob $2 / N$ of being bad.

Fingerprinting

Basic idea: compare two things from a big universe U

- generally takes $\log U$, could be huge.
- Better: randomly map U to smaller V, compare elements of V.
- $\operatorname{Probability}($ same $)=1 /|V|$
- intuition: $\log V$ bits to compare, error prob. $1 /|V|$

We work with fields

- add, subtract, mult, divide
- 0 and 1 elements
- eg reals, rats, (not ints)
- talk about Z_{p}
- which field often won't matter.

Verifying matrix multiplications:

- Claim $A B=C$
- check by mul: n^{3}, or $n^{2.376}$ with deep math
- Freivald's $O\left(n^{2}\right)$.
- Good to apply at end of complex algorithm (check answer)

Freivald's technique:

- choose random $r \in\{0,1\}^{n}$
- check $A B r=C r$
- time $O\left(n^{2}\right)$
- if $A B=C$, fine.
- What if $A B \neq C$?
- trouble if $(A B-C) r=0$ but $D=A B-C \neq 0$
- find some nonzero row $\left(d_{1}, \ldots, d_{n}\right)$
$-\operatorname{wlog} d_{1} \neq 0$
- trouble if $\sum d_{i} r_{i}=0$
- ie $r_{1}=\left(\sum_{i>1} d_{i} r_{i}\right) / d_{1}$
- principle of deferred decisions: choose all $i \geq 2$ first
- then have exactly one error value for r_{1}
- prob. pick it is at most $1 / 2$

How improve detection prob?

- k trials makes $1 / 2^{k}$ failure.
- Or choosing $r \in[1, s]$ makes $1 / s$.
- Doesn't just do matrix mul.
- check any matrix identity claim
- useful when matrices are "implicit" (e.g. $A B$)
- We are mapping matrices (n^{2} entries) to vectors (n entries).

String matching

Checksums:

- Alice and Bob have bit strings of length n
- Think of n bit integers a, b
- take a prime number p, compare $a \bmod p$ and $b \bmod p$ with $\log p$ bits.
- trouble if $a=b \quad(\bmod p)$. How avoid? How likely?
$-c=a-b$ is n-bit integer.
- so at most n prime factors.
- How many prime factors less than $k ? \Theta(k / \ln k)$
- so take $2 n^{2} \log n$ limit
- number of primes about n^{2}
- So on random one, $1 / n$ error prob.
- $O(\log n)$ bits to send.
- implement by add/sub, no mul or div!

How find prime?

- Well, a randomly chosen number is prime with prob. $1 / \ln n$,
- so just try a few.
- How know its prime? Simple randomized test (later)

Pattern matching in strings

- m-bit pattern
- n-bit string
- work mod prime p of size at most t
- prob. error at particular point most $m /(t / \log t)$
- so pick big t, union bound
- implement by add/sub, no mul or div!

