Admin

Next tuesday: holiday.

- pset due thursday
- but material done TODAY (almost)
- so start/finish early, have fun on vacation
- New pset POSTED tuesday, distributed thursday

Method of Conditional Probabilities and Expectations

Derandomization.

- Theory: is P=RP?
- practice: avoid chance of error, chance of slow.

Conditional Expectation. Max-Cut

- Imagine placing one vertex at a time.
- $x_i = 0$ or 1 for left or right side
- $E[C] = (1/2)E[C|x_1 = 0] + (1/2)E[C|x_1 = 1]$
- Thus, either $E[C|x_1 = 0]$ or $E[C|X_1 = 1] \ge E[C]$
- Pick that one, continue
- More general, whole tree of element settings.
 - $\text{ Let } C(a) = E[C \mid a].$
 - For node a with children b, c, C(b) or $C(c) \ge C(a)$.
- By induction, get to leaf with expected value at least E[C]
- But no randomness left, so that is actual cut value.
- Problem: how compute node values? Easy.

Conditional Probabilities. Set balancing. (works for wires too)

- Review set-balancing Chernoff bound
- Think of setting item at a time
- Let Q be bad event (unbalanced set)
- We know $\Pr[Q] < 1/n$.

- $\Pr[Q] = 1/2 \Pr[Q \mid x_{i0}] + 1/2 \Pr[Q \mid x_{i1}]$
- Follows that one of conditional probs. less than $\Pr[Q] < 1/n$.
- More general, whole tree of element settings.
 - Let $P(a) = \Pr[Q \mid a]$.
 - For node a with children b, c, P(b) or P(c) < P(a).
 - -P(r) < 1 sufficient at root r.
 - at leaf l, P(l) = 0 or 1.
- One big problem: need to compute these probabilities!

Pessimistic Estimators.

- Alternative to computing probabilities
- three necessary conditions:

$$- \hat{P}(r) < 1 - \min\{\hat{P}(b), \hat{P}(c)\} < \hat{P}(a)$$

 $-\hat{P}$ computable

Imply can use \hat{P} instead of actual.

- Let $Q_i = \Pr[$ unbalanced set i]
- Let $\hat{P}(a) = \sum \Pr[Q_b \mid a]$ at tree node a
- Claim 3 conditions.

- HW

- Result: deterministic $O(\sqrt{n \ln n})$ bias.
- more sophisticated pessimistic estimator for wiring.

Oblivious routing

- recall: choose random routing. Only 1/N chance of failure
- Choose N^3 random routines.
- whp, for every permutation, at most $2N^2$ bad routes.
- given the N^3 routes, pick one at random.
- so for any permutation, prob 2/N of being bad.

Fingerprinting

Basic idea: compare two things from a big universe U

- generally takes $\log U$, could be huge.
- Better: randomly map U to smaller V, compare elements of V.
- Probability(same) = 1/|V|
- intuition: $\log V$ bits to compare, error prob. 1/|V|

We work with *fields*

- add, subtract, mult, divide
- 0 and 1 elements
- eg reals, rats, (not ints)
- talk about Z_p
- which field often won't matter.

Verifying matrix multiplications:

- Claim AB = C
- check by mul: n^3 , or $n^{2.376}$ with deep math
- Freivald's $O(n^2)$.
- Good to apply at end of complex algorithm (check answer)

Freivald's technique:

- choose random $r \in \{0, 1\}^n$
- check ABr = Cr
- time $O(n^2)$
- if AB = C, fine.
- What if $AB \neq C$?
 - trouble if (AB C)r = 0 but $D = AB C \neq 0$
 - find some nonzero row (d_1, \ldots, d_n)
 - $\text{ wlog } d_1 \neq 0$
 - trouble if $\sum d_i r_i = 0$
 - ie $r_1 = (\sum_{i>1} d_i r_i)/d_1$

- principle of deferred decisions: choose all $i \geq 2$ first
- then have exactly one error value for r_1
- prob. pick it is at most 1/2

How improve detection prob?

- -k trials makes $1/2^k$ failure.
- Or choosing $r \in [1, s]$ makes 1/s.
- Doesn't just do matrix mul.
 - check any matrix identity claim
 - useful when matrices are "implicit" (e.g. AB)
- We are mapping matrices $(n^2 \text{ entries})$ to vectors (n entries).

String matching

Checksums:

- Alice and Bob have bit strings of length n
- Think of n bit integers a, b
- take a prime number p, compare $a \mod p$ and $b \mod p$ with $\log p$ bits.
- trouble if $a = b \pmod{p}$. How avoid? How likely?
 - -c = a b is *n*-bit integer.
 - so at most n prime factors.
 - How many prime factors less than k? $\Theta(k/\ln k)$
 - so take $2n^2 \log n$ limit
 - number of primes about n^2
 - So on random one, 1/n error prob.
 - $O(\log n)$ bits to send.
 - implement by add/sub, no mul or div!

How find prime?

- Well, a randomly chosen number is prime with prob. $1/\ln n$,
- so just try a few.
- How know its prime? Simple randomized test (later)

Pattern matching in strings

- *m*-bit pattern
- *n*-bit string
- work mod prime p of size at most t
- prob. error at particular point most $m/(t/\log t)$
- so pick big t, union bound
- implement by add/sub, no mul or div!