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Nash Equzlzbrzum In this lecture we consider several examples of
strategic games and try to find Nash Equlibria for them and answer the
following questions regarding Nash Equilibrium for a strategic game.

e Does Nash Equilibrium always exist for a game ?

e [f it exists how to compute it and is it always possible to compute it ?

We also analyze a general constant sum game and Nash Equilibria for it.

1 Strategic Games

A STRATEGIC GAME is a model of interacting decision makers referred
to as players. Formally, a strategic game consists of

e a set of players
e for each player, a set of actions/strategies

e for each player, preferences over the set of action profiles.

Definition: A strategy profile (s}, s3, s3, ..., s;) for a n player game is a

Nash Equilibrium iff

Vi, Vsi, ui(st, 85,85, 85) > wi(st, 85, Si_y, Siyery S5), wWhere u; is
the utility of player .

The above definition neither implies that a strategic game has a Nash equi-
librium, nor that it has only one. Examples in the next section show that
some games have a single Nash equilibrium, some possess no Nash equilibria
and others have many Nash equilibria.



Choice of Strategies

e Pure Strategies: A pure strategy is one where players deterministically
choose their moves.

o Mized Strategies: A mixed strategy is one where players randomly
choose one out of many different strategies. For example players can
choose a probability distribution over the the set of possible strategies
and randomly pick one before playing the game.

The best strategy for a player in a game may be a mixed one. In some
games, however, it is possible for a pure strategy to be optimal.

2 Examples of Nash equilibrium in some games

2.1 Prisoner’s Dilemma

T'wo suspects in a crime are held in separate cells. There is enough evidence to
convict each of them of a minor offense, but not enough evidence to convict
either of them of the major crime unless one of them acts as an informer
against the other. If they both stay quiet, each will be convicted of the
minor crime and spend only one year in prison. If one and only one of them
confesses, she will be freed and the other person will be convicted of the
major crime and spend 10 years in jail. If they both confess, each will spend
five years in prison.

This situation may be modeled as a strategic game.

Players: The two suspects.
Actions: Each player’s set of actions is {Confess, Deny}.

We can represent the suspects’ preference orderings with a payoff function
and represent the game compactly with the payoff matrix:

C | D
C| 55 |0,10
D[10,0] 1,1




By examining the four possible pairs of actions in this game, one can see
that the action pair (Confess,Confess) is a pure strategy Nash Equilibrium
because if player 2 chooses Confess,player 1 is better off choosing Confess
than Deny. Similarly given that player 1 chooses to Confess, player 2 is
better off choosing Confess than Deny.

2.2 Battle of the Sexes: Cricket or Movie

Two people (a boy and his girlfriend for example) wish to go out together.The
boy prefers to go for the cricket match whilst his girlfriend prefers watching
the movie. If they go out together for the movie the girl is very happy while
the boy is happy but not so much, while if they go out together for the cricket
match the boy is very happy but the girl is not very happy. But if they go
out separately they are both equally unhappy. This situation can be mod-
eled as the two-player strategic game with the payoff matrix as shown below,
in which the boy who prefers cricket chooses a row while the girl chooses a
column.

c | M
C [ 10,5 0,0
M| 0,0 | 5,10

In this case, {Cricket,Cricket} and {Movie,Movie} are the two pure strategy
Nash Equilibria, i.e if in every encounter, both players choose to watch a
Movie, then no player has an incentive to deviate; if, in each encounter both
choose to watch cricket, then again no player has an incentive to deviate.
Moreover (1/3, 2/3) is a mixed strategy Nash Equilibrium.

2.3 Matching Pennies

In this game two people choose, simultaneously, whether to show the Head or
the Tail of a coin. If they show the same side, person 2 pays person 1 a rupee;
if they show different sides, person 1 pays person 2 one rupee. A strategic
game form that models this situation is shown the figure. In this represen-
tation of the players’ preferences, the payoffs are equal to the amounts of
payoff involved. In this game the player’s interests are completely opposite,
whereas player one wants to take same action as player two while player two
benefits when he takes the opposite action to player one. This game is also



an example of a zero-sum game where the sum of the payoffs for the two
players for each choice is zero.

H| T
H|1-1]-1,1
T 11|11

By checking each of the four pair of actions in this game, one can see that this
game has no pure strategy Nash Equilibrium. Since for the pair of choices
(T,T) and (H,H), player two is better off deviating, while for the pair of
actions (H,T) and (T,H), player 1 is better off deviating. (1/2, 1/2) is a
mixed strategy Nash Equilibrium here.

3 Iterated Deletion to compute Nash Equi-
librium.

Definition : Strategy ¢ dominates strategy ¢ for row player iff

Vj, UT(Za.]) 2 ur(ilaj)

Consider the example of Prisoner’s Dilemma:

C | 5 | 0| «<Dominates
D101

Note: Here the payoffs are in the negative sense.
Definition: Strategy j dominates strategy j' for column player iff
Vi, up(i,7) > u(i,j")
Definition : Strategy s; is a dominant strategy for player i iff
VS1, 89y cvey Sn Uil STy 82y weny S5y Sit1y vevy Sn) = Wi(S1, 52y oeny Sn)

One can delete rows or columns which are dominated by other rows or
columns interactively to identify the Nash equilibria. Consider an example
for which the payoff matrix is as below:



INIL| A|B]|C|D
A 5226|1404
B [0,0]32[21]1,1
C (70221551
D [951,3]02]48

In the above matrix column D dominates column A for column player,
hence column A can be deleted to get a reduced matrix. Now in the reduced
matrix, row B dominates row A and also row C dominates row D hence rows
A and D can be deleted. Furthermore (in the reduced matrix) column C
dominates column D for column player, hence the metric reduces to a 2 x 2
matrix, where row B dominates row C. Finally column B dominates column
C leaving (3,2) as the unique Nash Equilibrium.

This strategy however does not always succeed in giving the Nash Equilib-
rium. We might reach a stage from which we cannot delete further rows/columns
to obtain the Nash Equilibrium.

For example, in the battle of sexes game described previously, this method
does not give the Nash Equilibria since no column or row is dominated by
any other column or row respectively.

4 A general two player constant sum game
Since the game is a constant sum game,

Vi,J, aij +bij = constant = c.

A general two-player constant sum game can be represented as a pair of
payoff matrices. Consider a general 2 player game in which the row player
has m choices of strategy and the column player has n choices. The payoff
matrix for this game would be a m x n matrix.

Qij, bij




In this game, a;; is the payoff to the row player if the row player plays strategy
i and the column player chooses strategy j, and b;; is the payoff to the column
player, where a;; + b;; is constant.
A muzed strategy of the row player is represented by a m-tuple of proba-
bilities p,
a where p; > 0,1 <1 <m

and

Similarly, the mixed strategy of the column player is represented as a n-tuple,
q

where Y ¢, = 1.

When row player plays the mixed strategy p and the column player plays the

mixed strategy q, the payoff to the row player is u,(p,q) = > i bigjai; =
T A - T

P Aq

Similarly, the payoff to the column player is u.(p,q) = ), Zj pigibi; =
T

p" Byq.

Definition : (p*, q*) is a Nash Equilibrium (for mixed strategy) iff,

For row player A,
vp, p"TAq* > pTAq’

and for column player B,

Vq, p*"Bq* > p*TBq

4.1 Saddle Points

Definition : For a Matrix A, a;; is a saddle point of A if it is simultaneously
a minimum in its row and a maximum in its column, i.e

Vk, ai; > a;
Vi, a;; < ajy

Theorem : q;; is a saddle point <= (i,j) is a Nash Equilibrium.



Proof:(=) Since q;; is a saddle point, a;; is maximum in its column hence
the row player cannot increase his payoff given that column player has
chosen column j. Similarly since it is minimum in its row and the payoff of
the column player is (¢ — a;;), hence he cannot increase his payoff by
changing his strategy given that the row player has chosen row z. Hence
(1,7) is a Nash Equilibrium.

(<)If (4,7) is a Nash Equilibrium, obviously a;; is the maximum value in
its column(it is the payoff to the column player). Similarly for the row
player, it is the minimum in its row since (c - a;;) is the payoff to the row
player. Hence, (7,7) is a saddle point.

Theorem : If a;; is a saddle point and a,,, is also a saddle point, then
a;n and a,,; are also saddle points and

Ai5 = Amp = Qi = Apj-
Proof: Since by definition, saddle points are minima in their rows and
maxima in their columns,

Q4 S Qin S Amn, and Amn, S Qin S ij,

Hence,

G5 = Amj — Amp = Gip.-
Also, aj, is a saddle point since a;, = a;; is a minimum in its row i, and a;,
= Qyyp 1S @ maximum in its column n. Similarly, a,,; is a saddle point.

Definition: Let a; = min; a;; be the guaranteed payoff to row player if he
chooses row 7. Let
u, = max; a; = max; min; aj;
U, = Mmin; max; ajj

Lemma: For any matrix A, U, > U,.

Proof: We have, a;; > min;, a;, Vi,j. Hence max; a;; > max; ming ag,
vj.

This implies max; a;; > u,, Vj. Therefore min; max; a;; > u,

= Ue 2 Uy

The above lemma, also holds for the case of mixed strategies. The proof is
given later



Theorem: Matrix A has a saddle point <— u, = u,.

Proof: (=) Let a;; be a saddle point of A. By definition, a;; = min; a;.
Also, u, > a;; and a;; = maxy aij. Hence, u, < a;;.

Combining these two, u. < a;; < u,. But from the previous lemma u, < u..
Hence u, = u,.

(<) Choose i s.t., ming a;, = u,.

Now choose [ s.t. a; = min, a;, = u. = u,.

Since a; is the minimum in row ¢ and 3 column ¢ such that

max, agj = Uc.
Thus ay = u. = maxy ag; > a;;. Since a is a minimum in its row, a; =
Q-

Thus, a;; is also a minimum its row.

= Qi = G5 = MaXg Qgj

which proves that a;; is a saddle point of A.

5 Minimax Theorem

Definition : Row value for a mixed strategy is defined as
v, = max, min, p’ Aq
Similarly column value is defined as,
v, = min, max, p’ Aq
In other words, v, is the amount of payoff that the row player is guaranteed
to win on the average, assuming that he plays rationally.

Lemma: For any matrix A, v, > v,.

Proof : We observe that p? Aq > ming p” AqVp, q. Taking the maximum
over all p on both sides, max, p’ Aq > max, min, p’ Aq¥q. The RHS is
v, thus the previous equation can be re-written as max, p’ Aq > v,, vq.
Therefore min, max, p’ Aq > v,,Vq. This proves v. > v,.

Theorem : px, q* is a Nash Equilibrium iff v, = v, = px7 Aqgx*.

Proof : (=) As px*, gq* is a Nash Equilibrium of A,
pxT Aqx = ming px” Aq. Also, v, > px’ Ag* and px’ Ag* = max, p” Agx.
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Hence, v, < p*f Aq*. Combining these two we get, v, > v.. But from
previous lemma v. > v,. This proves v. = v,.

(<) Choose p s.t., ming px’ Aq = v,. Now choose ¢’ s.t.

px’ Aq = min, p'"Aq = v, = v,. Since p'”" Aq' is the minimum over all p
and d strategy qx s.t.

max, p’ Aqx = v,.

Thus p'" Aq’ = v, = max, p” Aq* > p+T Agx. Since px”Aq’ is the
minimum over all p, px’ Aq' = px’ Aqx.

Thus px” Aqx is also minimum over all p for the same q.

= p*’ Ag+ = px’ Aq' = max, p’ Ag+. Thus px, q* is a Nash Equilibrium.

[VonNeumanns'MinimaxTheorem| For any two person zero-sum game
specified by matrix A, optimal mixed strategies exist for both players.
Moreover the row and column values are equal. In other words,

max min p’ Aq = min max p’ Aq (1)
| o q q | o
or v, =v. Alsoif p* and ¢* denote the optimal strategies for the row and
the column player respectively, then

1. v, = v, = p*T A¢*
2. (p*,q¢*) is a Nash Equilibrium for this two player game.

The optimal strategy for row player will yield the same payoff as the
optimal strategy for Column player! If either the row or the column player
plays her optimal strategy, the opponent cannot improve the expected
payoff. Thus once a player has publicly committed to play the optimal
strategy, it is possible for the other player to play the game with a pure
strategy and still receive the optimal expected payoff.

6 Proof of Minimax Theorem

This proof requires the duality theorem, a well known result in linear
programming. A linear programming problem can be defined in terms of
constraints Ax > b and x > 0, and a cost vector C . The goal is to
minimize the cost CTx subject to the constraints and given a cost vector.
This is called the primal problem. Associated with every primal problem is



a dual problem stated as follows. The constraints now become ATy < C
and y > 0, the new cost vector is b and the goal is to maximize bTy.
[DualityTheorem)] If either problem (primal or dual) has a best vector
(called x* or y*), then so does the other. The minimum CTx* equals the
maximum y*Tbh

CTX* — bTy* (2)

In terms of P(the row player) and @(column player), we want to minimize
(primal) ¢Tp (called p*) subject to the constraints pTA > b and p > 0.
We also want to maximize (dual) bTq (called ¢*) subject to the constraints
Aq < cand q > 0, where ¢ and b are unit vectors. In light of this
formulation and the duality theorem, we can state

¢"p" = b = 0 (3)

Therefore, our probability distributions that correspond to our optimal
vectors p* and q* are obtained by setting p* = p*/0 and q* = q*/#.
Proof of Von Neumanns’ Minimax Theorem| Since FTA > b,

Vq, FTAq > bTq. And since bTq = 1, this implies that p*TAq > 1/6.
This gives a lower bound on how much P is winning (1/6). Similarly,
P Aq > bTq =1 implies that pTAq* < 1/6 and that 1/6 is an upper
bound on @’s loss.

Therefore,
*T * 1
p Mg = o (4)
* * * 1
p"Mq* < p*"Mgq =3 (5)
p"Mq® < p*"Mq (6)
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