Randomized Algorithms Georgia Tech CS8113F, Winter 1999
Prof. Leonard Schulman CCB 234, (404) 894-6438, schulman@cc.gatech.edu
Lectures # 16 & 17: Mar 8 & 10 ’99. “Perfect Matchings in Graphs”

Scribe: German Riano-Mendoza

1 Introduction

Let G be a graph with edge set E. (Undirected, no multiple edges or loops.) A matching is a set of

edges joining disjoint vertices. A perfect matching is one that uses all the vertices.

Theorem 1.1 (Schwartz-Zippel). Let f be a multivariate polynomial of total degree k in the variables
Z1,...,&m, over the field GF(q). The fraction of vectors & € GF(q)™ which are roots of f is at most

k/q.
The total degree of a polynomial is the maximum, over its monomials, of the sum of the degrees of

the variables appearing in the monomial.

For a proof of this theorem see the scribe notes from the previous offering of this course. Note that

in the univariate case this is the fundamental theorem of algebra.

Define the matrix A as:

0 iG)EE
A=quy if(,j)€Ei<] (1)
—&;; if (Z,j) ceE 1>

The determinant of A is a polynomial in n? variables. We will see that this determinant is different
from 0 if and only if there is a perfect matching in G. That allows us to formulate an algorithm to

determine if there is a perfect matching.
Theorem 1.2 (Tutte). det(A) # 0 iff A has a perfect matching.

Proof. If G has perfect matchings choose one and assign 1 to «;; if (¢, j) is in that matching, otherwise
assign 0 to z;;. The matrix obtained has det € {1, —1}.

Conversely assume det(A) # 0, we will show that there is a perfect matching. The net contribution
to det(A) of all permutations having an odd cycle is 0, for the following reason. In each such permutation
identify the “least” odd cycle by some fixed criterion, e.g. by ordering the odd cycles by the least label
of a vertex they contain. Then flip the direction of the least odd cycle. This map is an involution
on the set of permutations. Every permutation containing an odd cycle is mapped to another such

permutation, whose contribution to the determinant is opposite in sign.

Therefore there are permutations 7 supported by A (i.e. s.t. () = j = A;; # 0) having only even
cycles. In any even cycle of length greater than 2 we can use every alternate edge to obtain a perfect

matching. H

2 Determining whether G has a perfect matching

The following algorithm is due to Rabin and V. Vazirani:

e Pick a prime number ¢ such that 2n < ¢ < 4n. (This can be done deterministically in time
poly(n) or randomly, Las Vegas (= error free) in time polylog(n). The existence of such a prime

is a theorem known as Bertand’s postulate, see [1].)
e For every (i, j) € E, select each z;; uniformly independently in GF(q).
e Define the matrix A as in equation (1).

o Test whether det(A) = 0. (This can be done quickly because A has scalar, rather than variable,

entries.)

Theorem 2.1 (RV[4]). If G does not have a perfect matching then det(A) = 0, while if it does then
det(A) # 0 with probability at least 1/2.

Proof. The total degree of the determinant is n so this follows from the Schwartz-Zippel lemma. B

3 Finding a perfect matching

We new develop a randomized method to quickly find a perfect matching if one exists. A polynomial
time algorithm is implied by the above testing method, and self-reducibility. However, the following

method of Mulmuley, U. Vazirani and V. Vazirani is substantially more efficient. It is based upon:

Lemma 3.1 (MVV][3] Isolating Lemma). Let A = {a1,as,...,an} be a finite set. LetS = {S1,...,Sk}
be a collection of subsets of A. If a1, ..., ay,, are assigned weights w1, ..., wy,, the weight of set S; is
defined to be w(S;) = Zajes, wj. Let the weights wy, ..., wy, be 1id uniform random variables in the
range {1,...,n}. Then

PEi#] st w(S) = w(S;) = min{w(S,)}] < % (2)
Proof. Pick any vector of weights wy, . .. , w,, and any index i € {1,... ,m}. Consider the weight vector
Wrp = (W1, Win 1, T, Wik, - Win), (3)

where r € {1,... n}.

Claim: There exists an integer 0 < a(w,i) < n + 1 such that: (a) If r > a(w,?) then a; is not
contained in any minimal weight set over the weight vector w,;. (b) If 7 < a(w, 7) then a; is contained

in every minimal set over the weight vector w, ;.

Proof of the claim: There are three cases.

1. It may be that there is no r for which a; is contained in any minimal weight set over w;, ;. Then

a(w,i) = 0 is satisfactory.

2. It may be that for every r, a; is contained in every minimal weight set over w, ;. Then a(w,i) =

n + 1 is satisfactory.

3. Otherwise set a(w,4) = max{r : a; is contained in some minimal weight subset for w, ;}.

If ¥ > Wa(w,),; then, directly from the definition of a(w,), no minimal weight subset over w, ;

contains a;.

If r < wq(w,i),i, then compare the weight of any subset over the weight vectors wq(y 4),; and wy ;.
If the subset contains a;, its weight in the latter case is decreased by a(w,i) — r; otherwise its
weight is unchanged. Since among the minimal weight subsets over w4, there is at least one
which contains a;, the minimal weight subsets over w,; are precisely those which are minimal

OVer Wy(y i),; and contain a;.

Now choose (w1, ... ,wn) uniformly at random from 1,...,n. Then
Pluw; = a(w,)) < 1/n (4)
hence
P(There is any ¢ for which w; = a(w,)) < m/n. (5)

If for every i, a(w, i) # w;, then every a; either does or does not belong to all minimal subsets. There

is therefore a unique minimal subset. MW

This lemma is remarkable because of the absence of a dependence on & in the conclusion.

Now we describe the algorithm to not only decide whether there is a perfect matching in a graph,
but also find one, if such exists. The method is also efficiently parallelizable (it is in the complexity
class RNC, consisting of problems solvable with randomization in polylogarithmic time on polynomially

many processors), but we will not go into this in this lecture.

For every (i,j) € E pick an integer weight w;; iid uniformly distributed in {1,...,n?}. By the

isolating lemma, there is a unique min weight perfect matching of G with probability at least 1/2.
Define the matrix A by:
0 if (i,j)¢ E
A=<2ws if(i,j) € Ei<j (6)
—2% lf(Z:J)EE:Z>.7

Claim 3.1. If there is a unique min weight perfect matching of G (call it M) then:

o det(A4) £ 0

e The highest power of 2 that divides det(A) is 22V where W is the weight of M. Le. det(A) =

22W (an odd number).

Proof. Look at the contributions of various permutations m to det(A):

o If m has an odd cycle then, just as argued before (by reversing the direction of the “first” odd

cycle), its contribution to the determinant is cancelled out.

o If m consists of transpositions along the edges of M then it contributes +

22w

e If m has only even cycles, but does not correspond to M, then:

— If 7 is some other matching of weight W’ > W then it contributes +22W"

— If 7 has only even cycles and at least one of them is of length > 4, then by separating each

cycle into a pair of matchings on the vertices of that cycle, 7 is decomposed into two matchings
My # My of weights Wi, W, so m contributes +2W1+W2 Because of the uniqueness of M

not both of M; and M3 can achieve weight W, so W1 + Wa > 2W.

Assuming M is unique we proceed as follows to find M (if M is not unique this may not work but

we will be able to detect the failure and repeat): let

mij

where flij is the determinant of the (4,

and j’th column from A).

Claim 3.2. For every (i,j) € E:

>

mmw(i)=j

H Ag (k)

(=7
1 (7)

+2%4 det(Aij)

J) minor of A (the matrix obtained by removing the i’th row

1. The total contribution to m;; of permutations m having odd cycles is 0.

2. If (i,j) € M then m;;/2?V is odd.

3. If (i,5) € M then m;;/22V is even.

Proof.

1. If # has an odd cycle then it has an even number of odd cycles and hence an odd cycle not

containing point ¢. Pick the “first” odd cycle that does not contain point ¢ and flip it to obtain

a permutation 7”. Note that (77)" = 7. The contribution of 7" to m;; is the negation of the

contribution of 7 to m;;, because an odd number of signs have been flipped (in terms of the entries

we are using from the Tutte matrix).

such contribution of value £22W .
for values C' > 2.

By (1), we need only consider permutations containing solely even cycles. There is exactly one

Just as argued for 3.1, all other permutations contribute £2¢

Again by (1) we need only consider permutations containing solely even cycles, and again as in
claim 3.1, each of these contributes +2¢ for various C' > 2W.

Finally we collect all the elements necessary to describe the algorithm:

1. Generate the weights w; uniformly in {1,...,n?%}.

2. Define A as in equation (6), compute its determinant and if it is nonsingular invert it.

3. Determine W by factoring the greatest power of 2 out of det(A).

4. Obtain the values m;; from the equations m;; = £2%# det(flij) and det(flij) = (=1)it (A71);i det(A).

If m;; /22" is odd then place (3, j) in the matching.

5. Check whether this defines a perfect matching. This is guaranteed if the minimum weight perfect
matching is unique. If a perfect matching was not obtained, generate new weights and repeat the

process.

The simultaneous computation of all the m;;’s in step 2 is key to the efficiency of this procedure.

Since the probability that the minimum weight perfect matching (if any exist) is not unique is at
most 1/2, the expected number of repetitions of the procedure is at most 2. (If a 0 determinant is
encountered then it may be that there are no perfect matchings; one may first run the Rabin-Vazirani

procedure in order to get a high likelihood of weeding out that case.)

The numbers in the matrix A are integers bounded by 427", The determinant and inversion proce-
dures (carried out in rational arithmetic) can involve integers up to size about 27° Rational arithmetic
can be executed in nearly linear time in the number of bits required to represent the integers. Hence

the time for a single arithmetic operation in this matrix is bounded by approximately n3

. Many ma-
trix computations, including multiplication, inversion and determinant computation, have equivalent
asymptotic complexity, bounded by n*, where w is unknown; the best known upper bound is about
2.376, but no lower bound better than 2 is known. The overall runtime of the MVV algorithm is

therefore O(n**3) (up to polylogarithmic terms).

In fact if we examine the use of the isolating lemma we see that the weights should really be chosen

between 1 and 2|E| where E is the edge set of GG, so in fact the algorithm modified in this way gives:

Theorem 1. The MV'V algorithm finds a perfect matching, if one exists, in expected time O(n“t1|E]).

Matrix inversion is fairly efficiently parallelizable: it can be performed in time O(log2 n) on O(n*)
processors. (Incidentally this is not quite as good as matrix multiplication, which can be performed
in time O(logn) on O(n®) processors.) This, together with the fact that integer arithmetic can be
efficiently parallelized, implies that the above method has a work-preserving (up to log factors) RNC
implementation. (For detail see [2] §2.4 & 2.5.5.)

References
[1] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford, fifth edition,
1979.

[2] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes.
Morgan Kaufmann, 1992.

[3] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion. Combi-

natorica, 7:105-113, 1987.

[4] M. O. Rabin and V. V. Vazirani. Maximum matchings in general graphs through randomization.

J. Algorithms, 10(4):557-567, 1989.

