Notes for lecture 3, January 22, 2003. Overview; approximation of \#DNF

Overview of the previous lecture:- A language is a decision problem. DNF is the language of satisfiable formulas in Disjunctive Normal Form. Thus formulas $\phi\left(x_{1}, \ldots, x_{n}\right)$ in DNF are of the form

$$
\phi\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{i=1}^{k}\left(\bigwedge_{j=1}^{r_{i}} l_{i j}\right)
$$

where every $l_{i j}$ is one of $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$, where the x_{i} s are Boolean variables. Note that the computational complexity of satisfiability for DNF is trivial. This is because unless all the individual conjunctive clauses are individually non-satisfiable (which occurs for clause C_{i} if it contains both x_{j} and \bar{x}_{j} for some j), one can select values for the $x_{i}{ }^{\prime}$'s such that at least one clause evaluates to 1 . However, the problem of determining the existence of $\left\{x_{i}\right\}_{i=1}^{n}$ such that $\phi\left(x_{1}, \ldots, x_{n}\right)=0$ is difficult.
This is the complement of the Conjunctive Normal Form (CNF), where the satisfiability problem is difficult, but determining the existence of $\left\{x_{i}\right\}_{i=1}^{n}$ such that $\phi\left(x_{1}, \ldots, x_{n}\right)=0$ is trivial. DNF and CNF can be related to each other by DeMorgan's identities.
The function $\# D N F: \phi \rightarrow \mathbb{N}$ is defined for formulas ϕ in DNF to be the number of inputs $x=\left\{x_{i}\right\}_{i=1}^{n}$ satisfying ϕ.
$\# D N F \in \# P$, where $\# P$ is the set of functions $\{0,1\}^{n} \rightarrow \mathbb{N}$ which which give the number of satisfying leaves in the tree of a nondeterministic poly-time Turing machine. \#DNF can be shown to be $\# P$-complete with respect to deterministic poly-time reductions.

Additive vs. Multiplicative Approximation

Let θ be the fraction of assignments satisfying ϕ. Therefore $\theta=|\{x: \phi(x)=1\}| / 2^{n}=\# D N F(\phi) / 2^{n}$.
An additive approximation T satisfies $|T-\theta|<\epsilon$.
A multiplicative approximation T satisfies $\theta(1-\epsilon)<T<\theta(1+\epsilon)$.
Note that a multiplicative approximation implies an additive approximation, but not vice versa.
Eg:- Let $\phi(x)=\left(x_{1} \wedge \ldots \wedge x_{n / 3}\right) \vee\left(x_{n / 3+1} \wedge \ldots \wedge x_{2 n / 3}\right) \vee\left(x_{2 n / 3+1} \wedge \ldots \wedge x_{n}\right)$. Then $\theta \approx 2^{-n / 3}$. An additive approximation of no more than $1 / \operatorname{poly}(n)$ is useless as a multiplicative approximation.

Approximation algorithm (Karp, Luby and Madras)

(This will later be useful for network reliability problems, in particular the probability that a network remains connected when links undergo failure with some probability).
Let $\phi=C_{1} \vee C_{2} \vee \ldots \vee C_{k}$, where the C_{i} 's are the clauses. For an assignment τ of x, let $\mu(\tau)$ be the number of clauses that τ satisfies. Let r_{i} be the number of literals in clause C_{i}. Define $q=\sum_{i} 2^{-r_{i}}$. If k is the number of clauses, then $\theta \leq q \leq k \theta$.
Algorithm:-

1. Choose a clause C_{i} with probability $2^{-r_{i}} / q$.
2. Uniformly and randomly, choose τ satisfying C_{i}.
3. Let T, our estimator of θ, be $T=q / \mu(\tau)$

Claim:- T is an unbiased estimator of θ. (That is, $E(T)=\theta$.)
Proof:- Examine the following set of equalities.

$$
\begin{aligned}
E\left(\frac{q}{\mu(\tau)}\right) & =\sum_{i} \frac{2^{-r_{i}}}{q} E\left(\left.\frac{q}{\mu(\tau)} \right\rvert\, \text { pick } C_{i}\right) \\
& =\sum_{i} \frac{2^{-r_{i}}}{q} \sum_{\tau: C_{i}(\tau)=1} 2^{r_{i}-n} \frac{q}{\mu(\tau)} \\
& =\sum_{i} \sum_{\tau: C_{i}(\tau)=1} \frac{2^{-n}}{\mu(\tau)} \\
& =2^{-n} \sum_{\tau: \phi(\tau)=1} \frac{2^{-n}}{\mu(\tau)} \sum_{\tau: C_{i}(\tau)=1} 1 \\
& =2^{-n} \sum_{\tau: \phi(\tau)=1} 1 \\
& =\theta .
\end{aligned}
$$

Note that even though the estimator obtained by sampling τ uniformly and checking for satisfiability is unbiased, the variance is huge. The estimator T obtained above, however, doesn't suffer from this problem, as shown below.
Variance of T :-

$$
\operatorname{Var}(T)=E(T-\theta)^{2}=E\left(T^{2}\right)-\theta^{2}
$$

But

$$
\begin{align*}
E\left(T^{2}\right) & =\sum_{i} \frac{2^{-r_{i}}}{q} \sum_{\tau: C_{i}(\tau)=1} 2^{r_{i}-n} \frac{q^{2}}{\mu^{2}(\tau)} \\
& =2^{-n} q \sum_{i} \sum_{\tau: C_{i}(\tau)=1} \frac{1}{\mu(\tau)} \\
& =2^{-n} q \sum_{\tau: \phi(\tau)=1} \frac{1}{\mu(\tau)} \tag{1}
\end{align*}
$$

Let $r=\min _{i} r_{i}$, therefore $\theta \geq 2^{-r}$. By the union bound, $\theta \leq k 2^{-r}$, therefore $q \leq k 2^{-r}$, which implies that

$$
\begin{equation*}
q \leq k \theta \tag{2}
\end{equation*}
$$

Also, since $\mu(\tau) \geq 1$, therefore

$$
\begin{equation*}
\sum_{\tau: \phi(\tau)=1} \frac{1}{\mu(\tau)} \leq 2^{-n} \theta \tag{3}
\end{equation*}
$$

Substituting (2) and (3) in (1) gives us that $E\left(T^{2}\right) \leq k \theta^{2}$, and therefore

$$
\begin{equation*}
\operatorname{Var}(T) \leq(k-1) \theta^{2} \tag{4}
\end{equation*}
$$

Amplification:-

The resulting variance is reduced in two steps, the second of which is shown in the next lecture.

1. Repeat the K-L-M procedure $\frac{k-1}{\epsilon^{2} \delta}$ times to get estimates $T_{1}, \ldots, T_{k-1 / \epsilon^{2} \delta}$ of θ. Evaluate $\bar{T}=\operatorname{avg}\left(T_{i}\right)$. Since the T_{i} are independent real random variables, therefore $\operatorname{Var}(\bar{T})=\frac{\epsilon^{2} \delta}{k-1} \operatorname{Var}\left(T_{i}\right)=\frac{\epsilon^{2} \delta}{k-1}(k-1) \theta^{2}=\epsilon^{2} \delta \theta^{2}$.
Interlude:-
Markov Inequality

If A is a non-negative random variable, then $\operatorname{Pr}(A \geq \epsilon) \leq \frac{E(A)}{\epsilon}$. This is because $E(A)=E(A \mid A<\epsilon) \operatorname{Pr}(A<$ $\epsilon)+E(A \mid A \geq \epsilon) \operatorname{Pr}(A \geq \epsilon) \geq E(A \mid A \geq \epsilon) \operatorname{Pr}(A \geq \epsilon) \geq \epsilon \operatorname{Pr}(A \geq \epsilon)$.
Chebyshev Inequality
If $E(T)=\theta$, then $\operatorname{Pr}\left(|T-\theta| \geq c \sqrt{\operatorname{Var}(T)} \leq \frac{1}{c^{2}}\right.$.
Proof:- Apply Markov inequality to the random variable $(T-\theta)^{2}$.
Consequence for amplification of the algorithm:-
For \bar{T} given above and $\theta=2^{-n} \# D N F(\phi), P(|\bar{T}-\theta| \geq \epsilon \theta) \leq \delta$.
Next time we'll do another amplification step and show how the K-L-M algorithm gives a "fully polynomial randomised approximation scheme" (FPRAS) for \#DNF.

