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1 Chernoff Bound

Let
�

be a real-valued random variable with distribution � :����� ���
	��� ��� 	�����	����
Definition 1 The moment-generating function, or characteristic function for

�
(or, more precisely but less com-

monly, for � ) is defined for � ��� by ��� ��� ��! #"%$'&�(*)
Note that, for � �,+

, this gives the characteristic function for � pure-real, and the Fourier transform for �
pure-imaginary. For any � ,

�-� �/. �01 !�324��52
.

Assume
 �� �
�6,7

. We would like to find a large deviation bound. That is, if we sample 8�9 �;:<:<:;� 8>= from �
and take 8  9=@? =A3B 9 8 A , we would like to know how the distribution of

�
is concentrated around

7
. Last

time we bounded the tails, in the form
�0� "DCC �FEG7 CCIH�J )LK�M � J � , with a polynomial function,

M
, that dropped

off as 9NDO . This polynomial bound is good in general for small J . However, further out on the tail we can get
an exponential tail drop-off if � is tame enough (in particular, does not have a “heavy” tail). Without loss
of generality, take

7P . .
Theorem 2 (Chernoff) If the integral defining

� � �/� � converges unconditionally in a neighborhood of . , and
� � ��� �

is differentiable at . , then Q�R H .TS J;UWV 2YX���� " � H R ) VZJ =U
The idea is that the quality of the large deviation bound depends on how heavy the tails of � are, and that
this is measured by the smoothness of

�-�
at the origin; a moment-generating function that is differentiable

at the origin guarantees exponential tails.

Proof : �0�T" � H R )[1�0�]\^$;_ = ` H $;_ = Uba for any c H .
V  " $ _ = ( )$ _ = U Markoff bound1$�d _ = U  e\^$ _gfih'( h a
1$ d _ = Ukj  #"l$<_ ` )<m = 8 A are independent j $ d _ U  " $<_ ` )<m = j $ d _ U � � ��c �nm =
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We now need to show that there is a c H . such that
$ d _ U � � �/c � V 2

. At c  . , $�� � � � . �� 2
, so let’s find the

derivative of
$ d _ U � � �/c � at 0. Since

� �
is differentiable at 0 we have:� ��� ��c �� c CCCC �  �  "%$ _ ` )� c CCCCC �  �� � $ _ `� c�� CCCC � can switch order of derivative and integral by the

unconditional convergence of
� �

around .  #" � $ _ ` ) CC �1 !� �
�>!7@ .
So, the moment-generating function is flat at 0. Now we can differentiate the whole function:� $ d _ U ��� ��c �� c CCCC �  � $ d _ U ��� ��c �� c CCCC � $-d U _ ���� ��c �kE R $-d U _ � � ��c � CC � product rule,$-d U � ���� � . �	 
�� � E R $-d U � � � �/. �	 
�� 9 at c  .

5E R
We have determined that S c H . X�$ d _ U ��� �/c � V 2

, and thus there is a J U V 2
as stated in the theorem. �

This method also allows us, in some cases, to find the value of J U which gives the tightest Chernoff bound.
(Of course in for general � and

R
this can be a complicated task and we often settle for bounds on the bestJ U .)

Example 3 Symmetric Random Walk

Take � to be the probability with
��� � �  2<��1�0��� �  EY24�> 9� . The moment-generating function is:� � ��� �0 2� � $;&�� $ d & �0�������� �

Finding the optimal J U :
J<U ������_ J d U _ ������� c"!#!$!

insert calculus here
!$!#!

 � 2[E R �&%('�)O � 2*� R � d )(+�%O using c  2�-, �&. 2*� R2[E R
Define: /

U 5E , �&. J<U 2[E R� , �&. � 2[E R �0� � 21� R �� , �&. � 2*� R �
By the Chernoff bound we have: ����� � H R � K $32 % =
Consider two distributions: 4 , with probabilities 5 9� � 9�76 , the symmetric random walk from above, like a fair
coin, and 8 , with probabilities 5 9 d U� � 9�9 U�:6 , like a biased coin. Let’s rewrite

/
U :/

U  2[E R� , �&. 9 d U� 9� � 2*� R� , �&. 9�9 U� 9�
�; ( 4 �/8 � , �&. 4 ��8 �8 ��8 � defined as ���<4>=�= 8 �
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This value is the Kullback-Leibler divergence of 4 from 8 , also known as the information divergence or the
relative entropy of 4 with respect to 8 . ���<4>=�= 8 � is not a metric (it isn’t symmetric and doesn’t satisfy
the triangle inequality). For example, if have a fair coing but we sample 90 heads out of 100 throws,�����'. : �I� . : 2�� = =��'. : �I� . :���� � quantifies how unlikely this event is. It isn’t symmetric since, of course, the proba-
bility of getting 100 heads with a fair coin is not the same as the probability of getting 50 heads with a coin
that has probability 1 of coming up heads. � is useful throughout information theory and statistics (and
is closely related to the “Fisher information”); it’s role in the Chernoff bound is one of the reasons for it’s
importance. For more information see the text by Cover and Thomas.

2 #DNF (Continued)

Recall, from last time, that we have an algorithm for estimating #DNF which runs in time poly �
	 � 9 U � 9� � and
that produces an unbiased estimator � of

7
satisfying:�0� � � 2TE R � 7 K � K � 2 � R � 7 �� 2[E��

Definition 4 Algorithm � is a FPRAS (fully polynomial randomized approximation scheme) for quantity
7

if:

� � is randomized,
� � runs in time poly �
	 � 9 U � , and
� �0� � � 2TE R � 7 K � K � 21� R � 7 �� ��

.

Lemma 5 Having a FPRAS implies that in time poly ��	 � 9 U � , �&. 9� � we can produce � satisfying:�0� � � 2TE R � 7 K � K � 2 � R � 7 �� 2[E��

In our algorithm from last time, we started with an algorithm to approximate #DNF, and amplified it using
the Chebyshev inequality to shrink the variance below

R
, and then continued to shrink it below

R �
. The

above lemma shows us that there is a way of avoiding going as far in the variance-reduction as we did last
time, since we only need

�
� of the probability mass inside the

7 � 2�� R � range to apply the lemma.

Proof : By assumption, we have a random variable
�

which we can produce in time poly ��	 � 9 U � with
��

of the
probability mass inside the range

7 � 2�� R � . Collect �  � , �&. 9� ��� � j � 9� � 9� �-� � �� � 9� � m samples 869 �;:<:<:<� 8�� , from
this distribution. (Here, � j � 9� � 9� � � � �� � 9� �*m is the divergence corresponding to an empirical “fair” distribu-
tion given a coin with probability

� ���
of coming up heads.) Select the median of 8 9 �<:;:<:4� 8 � as the output.

By assumption,  "! � ��8 A � K$# O U O�
. Therefore, by the Chebyshev inequality, we have

�0� � = 8 A E 7 = H 7 R � V 9� .
Therefore, with probability

��
, each sample is in the

7 � 2%� R � range, so:

�0��� = &('*) � ! � � = 8 A = �kEG7 = H 7 R � K $ � �,+ )O.- )O�/0- + O1 - )1 / � � 2�
�

Now our overall algorithm consists of � applications of a variance-reduction step, which averages the
samples, and one median calculation on the � averages.

Next time we will discuss Karger’s min-cut algorithm (as in CS 138), and put this together with the #DNF
approximation algorithm, to solve the network reliability problem.
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