Notes for lecture 4, January 24, 2003. Chernoff bound, FPRAS.

1 Chernoff Bound

Let X be a real-valued random variable with distribution D :

$$
\operatorname{Pr}[X \in S]=D(S), S \subseteq \mathbb{R}
$$

Definition 1 The moment-generating function, or characteristic function for X (or, more precisely but less commonly, for D) is defined for $t \in \mathbb{R}$ by

$$
g_{D}(t)=E\left[e^{t x}\right]
$$

Note that, for $t \in \mathbb{C}$, this gives the characteristic function for t pure-real, and the Fourier transform for t pure-imaginary. For any $D, g_{D}(0)=E[1]=1$.
Assume $E[X]=\theta$. We would like to find a large deviation bound. That is, if we sample x_{1}, \ldots, x_{n} from D and take $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$, we would like to know how the distribution of \bar{X} is concentrated around θ. Last time we bounded the tails, in the form $\operatorname{Pr}[|\bar{X}-\theta|>c] \leq f(c)$, with a polynomial function, f, that dropped off as $\frac{1}{c^{2}}$. This polynomial bound is good in general for small c. However, further out on the tail we can get an exponential tail drop-off if D is tame enough (in particular, does not have a "heavy" tail). Without loss of generality, take $\theta=0$.

Theorem 2 (Chernoff) If the integral defining $g_{D}(t)$ converges unconditionally in a neighborhood of 0 , and $g_{D}(t)$ is differentiable at 0 , then

$$
\forall \epsilon>0 \exists c_{\epsilon}<1: \operatorname{Pr}[\bar{X}>\epsilon]<c_{\epsilon}^{n}
$$

The idea is that the quality of the large deviation bound depends on how heavy the tails of D are, and that this is measured by the smoothness of g_{D} at the origin; a moment-generating function that is differentiable at the origin guarantees exponential tails.
Proof:

$$
\begin{array}{rlr}
\operatorname{Pr}[\bar{X}>\epsilon] & =\operatorname{Pr}\left[e^{\beta n \bar{X}}>e^{\beta n \epsilon}\right] & \text { for any } \beta>0 \\
& <\frac{E\left[e^{\beta n \bar{x}}\right]}{e^{\beta n \epsilon}} & \text { Markoff bound } \\
& =e^{-\beta n \epsilon} E\left[e^{\beta \sum_{i} x_{i}}\right] & \\
& =e^{-\beta n \epsilon}\left(E\left[e^{\beta X}\right]\right)^{n} & \\
& =\left(e^{-\beta \epsilon} E\left[e^{\beta X}\right]\right)^{n} & \\
& =\left(e^{-\beta \epsilon} g_{D}(\beta)\right)^{n} &
\end{array}
$$

We now need to show that there is a $\beta>0$ such that $e^{-\beta \epsilon} g_{D}(\beta)<1$. At $\beta=0, e^{0} g_{D}(0)=1$, so let's find the derivative of $e^{-\beta \epsilon} g_{D}(\beta)$ at 0 . Since g_{D} is differentiable at 0 we have:

$$
\begin{aligned}
\left.\frac{\partial g_{D}(\beta)}{\partial \beta}\right|_{0} & =\left.\frac{\partial E\left[e^{\beta X}\right]}{\partial \beta}\right|_{0} \\
& =\left.E\left[\frac{\partial e^{\beta X}}{\partial \beta}\right]\right|_{0} \\
& =\left.E\left[X e^{\beta X}\right]\right|_{0} \\
& =E[X]=\theta=0
\end{aligned}
$$

$$
=\left.E\left[\frac{\partial e^{\beta X}}{\partial \beta}\right]\right|_{0} \quad \begin{aligned}
& \text { can switch order of derivative and integral by the } \\
& \text { unconditional convergence of } g_{D} \text { around } 0
\end{aligned}
$$

So, the moment-generating function is flat at 0 . Now we can differentiate the whole function:

$$
\begin{array}{rlr}
\left.\frac{\partial e^{-\beta \epsilon} g_{D}(\beta)}{\partial \beta}\right|_{0} & =\left.\frac{\partial e^{-\beta \epsilon} g_{D}(\beta)}{\partial \beta}\right|_{0} & \\
& =e^{-\epsilon \beta} g_{D}^{\prime}(\beta)-\left.\epsilon e^{-\epsilon \beta} g_{D}(\beta)\right|_{0} & \text { product rule } \\
& =e^{-\epsilon 0} \underbrace{g_{D}^{\prime}(0)}_{0}-\epsilon e^{-\epsilon 0} \underbrace{g_{D}(0)}_{1} & \text { at } \beta=0 \\
& =-\epsilon &
\end{array}
$$

We have determined that $\exists \beta>0: e^{-\beta \epsilon} g_{D}(\beta)<1$, and thus there is a $c_{\epsilon}<1$ as stated in the theorem.
This method also allows us, in some cases, to find the value of c_{ϵ} which gives the tightest Chernoff bound. (Of course in for general D and ϵ this can be a complicated task and we often settle for bounds on the best c_{ϵ}.)

Example 3 Symmetric Random Walk
Take D to be the probability with $\operatorname{Pr}[X=1]=\operatorname{Pr}[X=-1]=\frac{1}{2}$. The moment-generating function is:

$$
g_{D}(t)=\frac{1}{2}\left(e^{t}+e^{-t}\right)=\cosh t
$$

Finding the optimal c_{ϵ} :

$$
\begin{aligned}
c_{\epsilon} & =\inf _{\beta} c^{-\epsilon \beta} \cosh \beta \\
& =\cdots \text { insert calculus here } \cdots \\
& =(1-\epsilon)^{\frac{\epsilon-1}{2}}(1+\epsilon)^{-\frac{1+\epsilon}{2}} \quad \quad \text { using } \beta=\frac{1}{2} \log \frac{1+\epsilon}{1-\epsilon}
\end{aligned}
$$

Define:

$$
\begin{aligned}
k_{\epsilon} & =-\log c_{\epsilon} \\
& =\frac{1-\epsilon}{2} \log (1-\epsilon)+\frac{(1+\epsilon)}{2} \log (1+\epsilon)
\end{aligned}
$$

By the Chernoff bound we have:

$$
\operatorname{Pr}[X>\epsilon] \leq e^{k_{\epsilon} n}
$$

Consider two distributions: p, with probabilities $\left\{\frac{1}{2}, \frac{1}{2}\right\}$, the symmetric random walk from above, like a fair coin, and q, with probabilities $\left\{\frac{1-\epsilon}{2}, \frac{1+\epsilon}{2}\right\}$, like a biased coin. Let's rewrite k_{ϵ} :

$$
\begin{array}{rlr}
k_{\epsilon} & =\frac{1-\epsilon}{2} \log \frac{\frac{1-\epsilon}{2}}{\frac{1}{2}}+\frac{1+\epsilon}{2} \log \frac{\frac{1+\epsilon}{2}}{\frac{1}{2}} \\
& =\sum_{x} p(x) \log \frac{p(x)}{q(x)} \quad \text { defined as } D(p \| q)
\end{array}
$$

This value is the Kullback-Leibler divergence of p from q, also known as the information divergence or the relative entropy of p with respect to $q . \quad D(p \| q)$ is not a metric (it isn't symmetric and doesn't satisfy the triangle inequality). For example, if have a fair coing but we sample 90 heads out of 100 throws, $D(\{0.9,0.1\} \|\{0.5,0.5\})$ quantifies how unlikely this event is. It isn't symmetric since, of course, the probability of getting 100 heads with a fair coin is not the same as the probability of getting 50 heads with a coin that has probability 1 of coming up heads. D is useful throughout information theory and statistics (and is closely related to the "Fisher information"); it's role in the Chernoff bound is one of the reasons for it's importance. For more information see the text by Cover and Thomas.

2 \#DNF (Continued)

Recall, from last time, that we have an algorithm for estimating \#DNF which runs in time poly $\left(n, \frac{1}{\epsilon}, \frac{1}{\delta}\right)$ and that produces an unbiased estimator T of θ satisfying:

$$
\operatorname{Pr}[(1-\epsilon) \theta \leq T \leq(1+\epsilon) \theta] \geq 1-\delta
$$

Definition 4 Algorithm A is a FPRAS (fully polynomial randomized approximation scheme) for quantity θ if:

- A is randomized,
- A runs in time poly $\left(n, \frac{1}{\epsilon}\right)$, and
- $\operatorname{Pr}[(1-\epsilon) \theta \leq T \leq(1+\epsilon) \theta] \geq \frac{2}{3}$.

Lemma 5 Having a FPRAS implies that in time poly $\left(n, \frac{1}{\epsilon}, \log \frac{1}{\delta}\right)$ we can produce T satisfying:

$$
\operatorname{Pr}[(1-\epsilon) \theta \leq T \leq(1+\epsilon) \theta] \geq 1-\delta
$$

In our algorithm from last time, we started with an algorithm to approximate \#DNF, and amplified it using the Chebyshev inequality to shrink the variance below ϵ, and then continued to shrink it below $\epsilon \delta$. The above lemma shows us that there is a way of avoiding going as far in the variance-reduction as we did last time, since we only need $\frac{3}{4}$ of the probability mass inside the $\theta(1 \pm \epsilon)$ range to apply the lemma.
Proof: By assumption, we have a random variable X which we can produce in time poly $\left(n, \frac{1}{\epsilon}\right)$ with $\frac{2}{3}$ of the probability mass inside the range $\theta(1 \pm \epsilon)$. Collect $m=\left(\log \frac{1}{\delta}\right) / D\left(\left\{\frac{1}{2}, \frac{1}{2}\right\},\left\{\frac{2}{3}, \frac{1}{3}\right\}\right)$ samples x_{1}, \ldots, x_{m}, from this distribution. (Here, $D\left(\left\{\frac{1}{2}, \frac{1}{2}\right\},\left\{\frac{2}{3}, \frac{1}{3}\right\}\right)$ is the divergence corresponding to an empirical "fair" distribution given a coin with probability $2 / 3$ of coming up heads.) Select the median of x_{1}, \ldots, x_{m} as the output. By assumption, $\operatorname{Var}\left(x_{i}\right) \leq \frac{\theta^{2} \epsilon^{2}}{3}$. Therefore, by the Chebyshev inequality, we have $\operatorname{Pr}\left[\left|x_{i}-\theta\right|>\theta \epsilon\right]<\frac{1}{3}$. Therefore, with probability $\frac{2}{3}$, each sample is in the $\theta(1 \pm \epsilon)$ range, so:

$$
\operatorname{Pr}\left[\left|\operatorname{median}\left(\left|x_{i}\right|\right)-\theta\right|>\theta \epsilon\right] \leq e^{D\left(\left\{\frac{1}{2}, \frac{1}{2}\right\},\left\{\frac{2}{3}, \frac{1}{3}\right\}\right) m}=\delta
$$

Now our overall algorithm consists of m applications of a variance-reduction step, which averages the samples, and one median calculation on the m averages.
Next time we will discuss Karger's min-cut algorithm (as in CS 138), and put this together with the \#DNF approximation algorithm, to solve the network reliability problem.

