
Probability and Algorithms Caltech CS150, Winter 2003
Leonard J. Schulman Scribe: Rebecca Schulman
Notes for lecture 9, February 10, 2003. Markov Chain Monte Carlo. Mixing times.

The typical situation is that we are sampling a large (superpolynomial) set (here labelled as
�

) that, while
large is exponentially smaller than the total set (here �������	��
 )
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Strategy: construct an artificial random walk on the set that quickly converges to a random point.

Generically, the Markov chains that we define will be on partially directed graphs with vertices and edges��� ����� .
Typically, � ��������� � �! �#"�$  % &')(�* & if

�  � or + edge
�,�-�� otherwise

or �."�$  0/12 13
&4 ' ( if + edge

�5���&4 if
�  �� otherwise

Cover time of a graph, COV(M), is the maximum over vertices
�

of the expected time to hit all vertices,
starting from

�
.

Mixing time of a process, MIX(M) is 687	9
initial distributions : on

$
68;=<
>@? � �#A >CBED �GF �H#I

where
D

is the unique stationery distribution of A .

The mixing time is defined in terms of the J & norm,
� � BLK �  NM $ � � �O� � BPK ��� � � , also called the “variation

distance.” (Often you will see the variation distance defined to be half of this.)

It would also make sense to define mixing time in terms of convergence in other metrics, but this is what is
standard. The difference in the rate of mixing in different measures is usually not large.

1



Note that the covering time is at least linear in the number of nodes in the graph.

Simple Example: The undirected, fully connected graph

Using the first walk rule, we have mixing in one step.
Using the second walk rule, we have mixing in 1 or 2 steps depending on the variation permitted for mixing
(the value

&4 is somewhat arbitrary).

Premise: to sample from a set, we hope to create a well connected graph whose vertices are the elements
of the set (e.g., the set of perfect matchings) such that mixing time for the random walk over the graph will
be small. In particular, we will construct cases in which the number of states, and the cover time, will be
exponential in our complexity parameter � , but the mixing time will be polynomial.

Generally A���� � A � F F���� �5� A � when A is “well connected.” We want to mix in time poly( 	�
����
 ) =
poly( � ). A clear lower bound for walks on undirected graphs is: mixing time � &4 Diameter(graph). (The
diameter of a graph is the longest shortest path between nodes.) (Fix a pair of furthest nodes. Their neigh-
borhoods of radius

&4 Diameter(graph) are disjoint, so one of them contains at most half the stationary
distribution on the graph.)

In general, there are several ways to bound mixing time:

1. Coupling Method

2. Conductance Method

3. Eigenvalue Method

As a warm-up, consider a random walk on a connected undirected graph, such that � � � "�"  &4 . Show that
the unique stationary distribution is that in which

D $ is proportional to � $ , the degree of
�

.

1. Existence: let � be the vector
� � $ � . Use ��� � to mean � is a neighbor of

�
.� ��� A � $  � $H������� $ � � �H � �  �� $

2. Uniqueness: Let � be arbitrary. Show +! #" � ��A%$ BED � F � � BED �
Define �'& : � &  ��A

so that� &$  �H �.$ ������ $ � � �H � �
Define

D & similarly as D &  D A
By definition D $  D &$  �H D $ � ���� $ D � �H � �
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Subtracting the two we get � &$ BED &$  �H � �.$ BED $ � � ���� $ �H � � � � � B D � �
Taking the J & norm of the vector difference we see first that it is nonincreasing:� � & BED & �  � $ � � &$ B D &$ �

 � $���� �H � �.$ BED $ � � ���� $ �H � � � � � B D � � ���� �H � $ � � � $ B D $ � � ���� $ �
� �
� � � BED � � �

 � $ � �.$ B D $ �  � � B D �
Let � *  � � " � $�� D $ ����  � � " �.$ F D $ �
The inequality

� � & BED & � � � � BED � is strict if, and only if, 	 ��� * � � � � � H . (Here 	 is distance in the graph.)

For 	 � � * � � � � � H , let
� � * � &  � *�
� ��� * �

That is,
��� * � & is the “

� *
of � & .” Define

� � � � & similarly. (
� � � * � is the neighborhood of

�
, ie,

� � � �5 �%" + ��� � � � ��� .)�
is guaranteed to be in

��� * � & if
� � � � 
�� � � � ������� � �  �� and if

� � � � 
�� � � � ������� � *�� �� . Similarly for��� � � & . Therefore
� *�� ��� * � & and

� � � � � � � & so long as 	 � � * � � � � � H . Since the graph is connected, we
will reach 	 ��� * � � � � � H , triggering strict decrease of the variation distance.

Comment: The proof works also for other walks, such as the walk with uniform transition probabilities&'�� * & for each node. In that case,
D $ ��� $ � � .

In general, figuring out the stationary distribution of a vertex of a Markov chain requires examining the
entire transition matrix. However, there’s a special class of chains, which includes many of those we’re
interested in, for which the distribution is easy to obtain.

Definition: A chain is balanced if

1. The transition probabilities are uniform on the out neighbors.

2. The number of in neighbors equals the number of out neihbors at every vertex.

Both of the types of walks on undirected graphs described at the beginning of the lecture are balanced. For
a balanced chain, the stationary distribution is obtained as follows: let � $ be the in-degree (equivalently the
out-degree) of

�
, and let ��$ $ (as before) be the probability that the walk stays at

�
. Then (as is easy to verify),D $ is proportional to � $�� � � B �#$ $ � .

A regular chain is balanced and has the same degree, and same � $ $ , at each vertex. So the stationary distri-
bution of a regular chain is uniform.

Examples:
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� A chain that is regular but does not mix.��
�

�
� �

�

�

� This graph has degree in = degree out = 2 everywhere. With transition probabilities of
&4 each, this

chain does mix.�� � ��� � � �� � �

���� �
� � � � � � � �

�
� � �
�

� � �

� A chain that is directed and unbalanced. One can imagine this chain with the ladder being very long.
� � � � � � � � �� � � � � � � � �	 	 	 	 	 	 	 	 	 
 
 
�

�

Note that there are two kinds of junctions on the ladder:� � � � � �
� � �

and � � �
� � �
� � �

The stable state for the vertex at the top and bottom of each rung is the same, but the stationary
distribution for each vertex decreases exponentially with distance from the right hand side.

Another special type of Markov chain, commonly considered both in Physics and in Computer Science, is
a reversible Markov chain. This is an ergodic chain satisfying the detailed balance condition: � � � � " D "��#"�$  D $)�#$ " . We won’t have more to say about these chains just now.
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