Notes for lecture 12, Feb 24, 2003. Sampling graph colorings.

Let n be the number of vertices and Δ be the max degree in G. We wish to sample q-colorings uniformly. For the decision problem, the following is known - If $q<\Delta$, it's a computationally hard problem.
If $q>\Delta$, there always exists a solution.
If $q=\Delta$, there is a polynomial time algorithm to solve the decision problem. (There are just a few special graphs which cannot be q-colored, and we can recognise them.)

For the sampling problem (sample approximately uniformly at random among all colorings), the status is that if $q \geq \frac{11}{6} \Delta$, there is a poly-time sampling method.

As an aside, it is known that the number of colorings of a graph can be evaluated exactly by evaluating a certain polynomial called the chromatic polynomial of the graph. The above stated facts imply that this polynomial can be (computationally feasibly) closely approximated for $q \geq \frac{11}{6} \Delta$, but not for $q<\Delta$ unless $\mathrm{P}=\mathrm{NP}$. The cases in between are open.

1 Random sampling of graph colorings with $q \geq 4 \Delta+1$

We'll show poly-time approximately uniform sampling in the case that $q \geq 4 \Delta+1$ (proving the result for $q \geq \frac{11}{6} \Delta$ is outside the scope of this class) and prove it by a coupling on q -colorings of G .
The Markov Chain is as follows:
Pick $v \in V, c \in C$ uniformly. Recolor v to c unless some neighbour of v is already colored with c.
This Markov chain is

1. Non-periodic,
2. Connected.

These conditions imply ergodicity of the chain.

Coupling: Let X and Y be two colorings of the graph, represented graphically in the above figure. Let V_{1} be the set of vertices in which X agrees in color with Y. Define the distance between two colorings as

$$
d \stackrel{\text { def }}{=}|V|-\left|V_{1}\right| .
$$

The coupling process is straightforward: choose a vertex v and a color c uniformly and randomly, and recolor v to c in each coloring if it is possible.
Call the step "good" if the recoloring can be done in both chains, and if X and Y had not agreed at v prior to the recoloring. Call the step "bad" if the recoloring can be done in just one chain, but X and Y had agreed at v prior to the recoloring. (Note that a step may be neither good nor bad.)

Run the above Markov chain on the initial coloring X_{1} and Y_{1}, to successively obtain the colorings X_{t} and Y_{t}, until the two colorings X_{t} and Y_{t} are identical.

$$
\begin{aligned}
d_{t} & \stackrel{\text { def }}{=}\left|V-V_{1}\right| \\
d_{t+1} & =d_{t}-1 \text { if the last step was "good" } \\
d_{t+1} & =d_{t}+1 \text { if the last step was "bad" } \\
d_{t+1} & =d_{t} \text { otherwise }
\end{aligned}
$$

The total number of moves available to the algorithm in each step is $n q$.
The number of "good" moves is $\geq d_{t}(q-2 \Delta)$, since there are at most Δ neighbours for each $v \in V-V_{1}$, and each of these neighbors has one color in X_{t}, and another (possibly equal) in Y_{t}, with which v cannot be recolored.
The number of "bad" moves is $\leq 2 d_{t} \Delta$ (as above) because a bad move is an attempt to recolor a neighbor v of a vertex $w \in V-V_{1}$, with one of the colors $X_{t}(w)$ or $Y_{t}(w)$.

$$
\begin{aligned}
E\left(d_{t+1} \mid d_{t}\right) & \leq d_{t}\left(1+\frac{2 \Delta}{q n}-\frac{q-2 \Delta}{q n}\right) \\
& =d_{t}\left(1-\frac{q-4 \Delta}{q n}\right) \\
E\left(d_{t}\right) & \leq n\left(1-\frac{q-4 \Delta}{q n}\right)^{t} \\
P\left(d_{t}>0\right) & \leq n\left(1-\frac{q-4 \Delta}{q n}\right)^{t} \\
E(\text { coupling time }) & \in O\left(\frac{q n}{q-4 \Delta} \log n\right)
\end{aligned}
$$

This method can be extended to $q \geq 2 \Delta+1$ with a bit more work. $11 \Delta / 6$ is harder.

2 Approximatly counting the number of colorings

Now that we know how to sample approximately uniformly from the colorings of a graph, subject to $q \geq 4 \Delta+1$, let's see how to count those colorings. (This doesn't follow automatically because the coloring problem isn't self-reducible.)
We are given a graph G with m edges and maximum degree Δ, and a parameter $q \geq 4 \Delta+1$. Order the edges arbitrarily $e_{1} \ldots e_{m}$. Let G_{i} be the subgraph of G with edges $e_{1} \ldots e_{i}$. Let $\Omega\left(G_{i}\right)=\left\{q\right.$-colorings of $\left.G_{i}\right\}$. Then we have the following relations.

$$
\begin{aligned}
\Omega\left(G_{i+1}\right) & \subseteq \Omega\left(G_{i}\right) \\
\Omega\left(G_{0}\right) & =\{1, \ldots, q\}^{n} \\
\Omega\left(G_{m}\right) & =\Omega(G)
\end{aligned}
$$

We will estimate $|\Omega(G)|$ by estimating each ratio $\frac{\left|\Omega\left(G_{i+1}\right)\right|}{\Omega\left(G_{i}\right) \mid}$, and multiplying out.

$$
|\Omega(G)|=\left|\Omega\left(G_{0}\right)\right| \prod_{i=0}^{m-1} \frac{\left|\Omega\left(G_{i+1}\right)\right|}{\left|\Omega\left(G_{i}\right)\right|}=q^{n} \prod_{i=0}^{m-1} \frac{\left|\Omega\left(G_{i+1}\right)\right|}{\left|\Omega\left(G_{i}\right)\right|}
$$

We will estimate each of the ratios $\frac{\left|\Omega\left(G_{i+1}\right)\right|}{\left|\Omega\left(G_{i}\right)\right|}$ by sampling nearly uniformly from $\Omega\left(G_{i}\right)$ and checking whether the coloring is in $\Omega\left(G_{i+1}\right)$. This will give us a reliable multiplicative estimate of the ratio because of:

Lemma: If $\Delta \geq 2$ then

$$
\frac{\left|\Omega\left(G_{i+1}\right)\right|}{\left|\Omega\left(G_{i}\right)\right|} \geq 7 / 8
$$

(If $\Delta<2$ it is trivial to sample or count colorings of the graph.)
Proof:- Consider any coloring X in $\Omega\left(G_{i}\right)-\Omega\left(G_{i+1}\right)$. It assigns the same color to the two vertices on e_{i}. There are at least $q-\Delta$ ways to recolor the higher-indexed of these two vertices to form a legal coloring of G_{i+1}, and the original coloring can be reconstructed from the modified one simply by assigning to the higher-indexed vertex the color of the lower-indexed one. Therefore

$$
\begin{aligned}
\left|\Omega\left(G_{i+1}\right)\right| & \geq(q-\Delta)\left(\left|\Omega\left(G_{i}\right)-\Omega\left(G_{i+1}\right)\right|\right) \\
& =(q-\Delta)\left(\left|\Omega\left(G_{i}\right)\right|-\left|\Omega\left(G_{i+1}\right)\right|\right) \\
\frac{\left|\Omega\left(G_{i+1}\right)\right|}{\left|\Omega\left(G_{i}\right)\right|} & \geq \frac{q-\Delta}{q-\Delta+1} \\
& \geq \frac{3 \Delta+1}{3 \Delta+2} \\
& \geq 7 / 8 \text { since } \Delta \geq 2 .
\end{aligned}
$$

