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Overview

e Dirac Notation comment
e Partial Trace and Schmidt Decomposition

e The Bloch Ball, one-qubit gates, and
controlled-U

Dirac notation quirk

e When taking tensor products of
subsystems, we can clarify which
vectors correspond to which subsystem

e E.g.[i)/1), means system 1 is in state [)
and system 2 is in state | )
e When computing the conjugate

transpose, following standard matrix
convention we would write

iy i, ) =Ll




Dirac notation quirk

e However, it is more common in physics
to write (often without the subscripts)

()33, ) = (LGl

e This way we can e.g. compute an inner
product in the following way

iy 0, F1K3I0), = LG,
= (L iRy, = [kl
= (iK1

Partial Trace

e Partial trace is the linear extension of
the following map:
Tr,(AOB) = ATr(B)
e In Dirac notation:
(i) k 010 ) =)k aTr () )
=|ik|O]7) = 7))k
© Note Jixk|of i) =[i) i)(k)n)
e Can see this by recalling
(aBt)o(cpt)=(aDC)B* 0 D)= (ADC)BO D)

Partial Trace using matrices

e Tracing out the 2" system

8y 8n Q4 g Tr |:aoo ao1:| Tr |:302 303:|
Ao A Sy Ay O &, 9y &, S
B B B A Tr|:a20 aﬂ Tr[azz aﬂ
&y 8y 8 Ay I 8y Ay

=[aw+an aoz+a13J
Bty Byt




Partial Trace using matrices

e Tracing out the 1st system

3o 8 8y 8y Tr[am aoz} Tr[am aog}
A A A A | (G B ay 8y
Ay 8y By 8y T{% au} T,[an aaa}
ap 8 8y A . ay as

:|:aoo+azz a01+a23}
ata, a,+ay

Schmidt decomposition
(section 2.5)

e Theorem: If ‘(IJ> is a pure state of a
composite system AB, thep there exists
an orthonormal basis (DiA>rfor system A
and {@p)} for system B, and non-
negative reals {p} , so that

0)=¥mjof)[o?)

A =,/p “Schmidt coefficients”

Schmidt decomposition
trivial example

"B Jy)=hy)
{0p)=[1)|or) =|0)f
{08)=[1)|0f) =|0)f

{p0=l, plzc}




Schmidt decomposition
almost trivial example

1 1 1 1
* B9 Jy)=2j00)-2joy-210)+ Sy

(Lo~ L) Lio-Lp)
{o2)=J5l0- ﬁ‘l\q’A> F )

{o2)= 1051 o) =0+ 1y
{p,=1.p,=0

Schmidt decomposition
example

e Eg.
=25 [\01> P2 g2y

Hlot)= 10+ Z18.ot)="Zl0- 3}

fo0)= o Jgnior =0
[p=gR=2l )= (mlot)os)+ dajotos)

00) + 10)+ D

Schmidt decomposition
application

e It is very easy to compute the reduced
density matrices given the Schmidt
decomposition

w)=2plof)ef)
Toly)y|=2 p|of) (@]
Te|w)y|= 2 plor){or]




observations

e Notice that the spectrum (i.e. set of
eigenvalues) of both reduced density
matrices are the same

Toly)y|=2 p|of) (@
ToJu)w|= 3 plo?)o!

How do we compute the
Schmidt decomposition?

e Nielsen and Chuang recommend the Singular
Value Decomposition; very elegant

e Alternatively, compute the partial traces,
and diagonalize them in order to find the
correct bases for each subsystem

e Or guess.

Other observations

e Read exercises 2.80, 2.81, 2.82 for other
very important facts that can be proved
easily using the Schmidt decomposition (we
will discuss these more later when
relevant).




Bloch Sphere

e These 4 matrices form a basis for
the 2x2 density matrices:

I AR NS

e So every density matrix can be
written as

p:%(l+axx+ayY+aZZ)

Bloch Ball

e We associate with every 1-qubit state
p:%(l +a X+aY+a”Z)
the vector  (a,, ay,az)
o If p=|W)W| forapure state
|W) =e"| cos g 0) +e sin(g 1)
Then the corresponding vector is
(a.a,,a,) =(sinBcos ¢, sinBsin ¢, cos 6)

Bloch Sphere

e Notice that the vectors
(a.,a,,a,) = (sinBcos ¢, sinBsin $, cos 6)
satisfy \ax\z +‘ay‘2 +‘az‘2 =1

i.e. pure states lie on the surface of
the Bloch Ball. By convexity, mixed
states lie within the Bloch Ball.




Bloch Sphere
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y
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Bloch Ball

e Rotations about the X axis are
denoted

wio=e = (2] ) <]

e Similar definitions for rotations
about the ¥ and Z axes (section 4.2)




Bloch Ball

e We can define a rotation about any axis
ﬁ = (nx’ny'nz)

RA(e) - e—iBﬁEﬂX,Y,Z)/Z

= cos(g)l —isin(gj(nxx +nY + nZZ)

Bloch Ball

e Alternatively, we can describe these
rotationsas R, ,(6) Wwhere

|W) = cos{ > | 0) +e*sin| = |1)

)= si%@-e”’ ((23)>
Ruo(8) W) =|¥)
R, ¢(6) W) ="

v

Arbitrary 1-qubit operations

e Theorem (Exercise 4.8): Any 1-qubit
operation can be written in the form

U =e"R (6)

for some axis ﬁ and angle e (the
“global phase” is not important... yet).




Arbitrary 1-qubit operations

e Theorem 4.1: Any 1-qubit operation
can be written in the form

U =e"R,(B)R, (V)R,(3)

For some real numbers @, [3,y, &

Arbitrary 1-qubit operations

e Corollary 4.2: Any 1-qubit operation
can be written in the form

U =e""AXBXC
where A, B, C are unitary operators
satisfying ABC =1

(this comes in handy when construction
the controlled-U)

The controlled-U

e The controlled-U or C(U) corresponds
to the operation

C(U)0)| W) =[0)|w)

CUILIW) = DU ¥)
denoted *
U

(note that how we define the “global” phase
of U significantly affects the C(U))




The controlled-U

e We can realize the controlled-U with
the following network

P
C—uo

B

Jan
U 1A

e So controlled-NOT plus all 1-qubit
gates allow us to implement any
controlled-U gate

The controlled-U

e It helps to observe that

Y.
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