

Introduction to Quantum Information Processing Lecture 9

Mictuele Mosca

Overview
- Dirac Notation comment - Partial Trace and Schmidt Decomposition - The Block Ball, one-qubit gates, and controlled-u

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dirac notation quirk

- When taking tensor products of subsystems, we can clarify which vectors correspond to which subsystem
- E.g. $|i\rangle_{1}|j\rangle_{2}$ means system 1 is in state $|i\rangle$ and system 2 is in state $|j\rangle$
- When computing the conjugate transpose, following standard matrix convention we would write

$$
\left(i i_{1} \mid j j_{2}\right)^{x}=\left\langlei i _ { 1 } \left\langle\left. j\right|_{2}\right.\right.
$$

Dirac notation quirk

- However, it is more common in physics to write (often without the subscripts)

$$
\left(|i\rangle_{1}|j\rangle_{2}\right)^{t}=\left\langlej | _ { 2 } \left\langle\left. i\right|_{1}\right.\right.
$$

- This way we can e.g. compute an inner product in the following way

$$
\left(|i\rangle_{1}|j\rangle_{2}\right)^{t}|k\rangle_{1}|l\rangle_{2}=\left\langle\left. j\right|_{2}\left\langle\left. i\right|_{1} \mid k\right\rangle_{1} \mid l\right\rangle_{2}
$$

$=\left\langle\left. j\right|_{2}\langle i \mid k\rangle \mid l\right\rangle_{2}=\langle i \mid k\rangle\left\langle\left. j\right|_{2} \mid l\right\rangle_{2}$
$=\langle i \mid k\rangle\langle j \mid l\rangle$

Partial Trace

- Partial trace is the line ar extension of the following map:

$$
\operatorname{Tr}_{2}(A \otimes B)=A \operatorname{Tr}(B)
$$

- In Dirac notation:

$$
\begin{aligned}
& \mathcal{T r}_{2}(|i\rangle\langle\kappa| \otimes|j\rangle\langle\Lambda|)=|i\rangle\langle\kappa| \otimes \mathcal{T r}_{r}(|j\rangle\langle\Lambda|) \\
& =|i\rangle\langle\kappa| \otimes\langle\mu \mid j\rangle=\langle\mu \mid j\rangle|i\rangle\langle\kappa|
\end{aligned}
$$

- \mathcal{N} ote $|i\rangle\langle k| \otimes|j\rangle\langle l|=|i\rangle|j\rangle(|k\rangle|l\rangle)^{t}$
- Cansee this by recalling $\left(A B^{t}\right) \otimes\left(C D^{t}\right)=(A \otimes C)\left(B^{t} \otimes D^{t}\right)=(A \otimes C)(B \otimes D)^{t}$

Partial Trace using matrices

- Tracing out the $2^{\text {nd }}$ system
$\left[\begin{array}{llll}a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33}\end{array}\right] \xrightarrow{\operatorname{Tr}_{2}}\left[\begin{array}{cc}\operatorname{Tr}\left[\begin{array}{ll}a_{00} & a_{01} \\ a_{10} & a_{11}\end{array}\right] & \operatorname{Tr}\left[\begin{array}{ll}a_{02} & a_{03} \\ a_{12} & a_{13}\end{array}\right] \\ \operatorname{Tr}\left[\begin{array}{ll}a_{20} & a_{21} \\ a_{30} & a_{31}\end{array}\right] & \operatorname{Tr}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]\end{array}\right]$

$$
=\left[\begin{array}{ll}
a_{00}+a_{11} & a_{02}+a_{13} \\
a_{20}+a_{31} & a_{22}+a_{33}
\end{array}\right]
$$

Partial Trace using matrices

\qquad

Schmidt decomposition (section 2.5)

- Theorem: If $|\psi\rangle$ is a pure state of a composite system $\mathcal{A B}$, thenthere exists an orthonormal basis $\left\{\left|\Phi_{i}^{A}\right\rangle\right\}$ for system \mathcal{A} and $\left.\left\{\Phi_{i}^{B}\right\rangle\right\}$ for syste $m \mathcal{B}$, and non-

$$
\text { negative reals }\left\{p_{i}\right\} \text {, so that }
$$

$$
\begin{aligned}
& |\Psi\rangle=\sum_{i} \sqrt{p_{i}}\left|\Phi_{i}^{A}\right\rangle\left|\Phi_{i}^{B}\right\rangle \\
& \lambda_{i}=\sqrt{p_{i}} \quad \text { "Sckmidt coefficients" }
\end{aligned}
$$

Schmidt decomposition trivial example
$\text { - E.g. } \begin{array}{ll} & \|\psi\rangle=\|11\rangle \\ & \left.\left\{\Phi_{0}^{A}\right\rangle=\|1\rangle,\left\|\Phi_{1}^{A}\right\rangle=\|0\rangle\right\} \\ & \left.\left\{\Phi_{0}^{B}\right\rangle=\|1\rangle,\left\|\Phi_{1}^{B}\right\rangle=\|0\rangle\right\} \\ & \left\{p_{0}=1, p_{1}=0\right\} \end{array}$

Scfmidt decomposition
almost trivial example
•E.g. $\|\psi\rangle=\frac{1}{2}\|00\rangle-\frac{1}{2}\|01\rangle-\frac{1}{2}\|10\rangle+\frac{1}{2}\|11\rangle$
$=1\left(\frac{1}{\sqrt{2}}\|0\rangle-\frac{1}{\sqrt{2}}\|1\rangle\right)\left(\frac{1}{\sqrt{2}}\|0\rangle-\frac{1}{\sqrt{2}}\|1\rangle\right)$
$\left\{\left\|\Phi_{0}^{A}\right\rangle=\frac{1}{\sqrt{2}}\|0\rangle-\frac{1}{\sqrt{1}}\|1\rangle,\left\|\Phi_{1}^{A}\right\rangle=\frac{1}{\sqrt{2}}\|0\rangle+\frac{1}{\sqrt{2}}\|1\rangle\right\}$
$\left\{\left\|\Phi_{0}^{B}\right\rangle=\frac{1}{\sqrt{2}}\|0\rangle-\frac{1}{\sqrt{2}}\|1\rangle,\left\|\Phi_{1}^{B}\right\rangle=\frac{1}{\sqrt{2}}\|0\rangle+\frac{1}{\sqrt{2}}\|1\rangle\right\}$
$\left\{p_{0}=1, p_{1}=0\right\}$

\qquad

Scfmidt decomposition
example
E..g.
$\|\psi\rangle=\frac{1+\sqrt{6}}{2 \sqrt{6}}\|00\rangle+\frac{1-\sqrt{6}}{2 \sqrt{6}}\|01\rangle+\frac{\sqrt{2}-\sqrt{3}}{2 \sqrt{6}}\|10\rangle+\frac{\sqrt{2}+\sqrt{3}}{2 \sqrt{6}}\|11\rangle$
$\left\{\left\|\Phi_{0}^{A}\right\rangle=\frac{1}{\sqrt{3}}\|0\rangle+\frac{\sqrt{2}}{\sqrt{3}}\|1\rangle,\left\|\Phi_{1}^{A}\right\rangle=\frac{\sqrt{2}}{\sqrt{3}}\|0\rangle-\frac{1}{\sqrt{3}}\|1\rangle\right\}$
$\left\{\left\|\Phi_{0}^{B}\right\rangle=\frac{1}{\sqrt{2}}\|0\rangle+\frac{1}{\sqrt{2}}\|1\rangle,\left\|\Phi_{1}^{B}\right\rangle=\frac{1}{\sqrt{2}}\|0\rangle-\frac{1}{\sqrt{2}}\|1\rangle\right\}$
$\left\{p_{0}=\frac{1}{4}, p_{1}=\frac{3}{4}\right\} \quad\|\psi\rangle=\sqrt{p_{0}}\left\|\Phi_{0}^{A}\right\rangle\left\|\Phi_{0}^{B}\right\rangle+\sqrt{p_{1}}\left\|\Phi_{1}^{A}\right\rangle\left\|\Phi_{1}^{B}\right\rangle$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Schmidt decomposition application
- It is very easy to compute the reduced density matrices given the Schmidt decomposition
$\|\Psi\rangle=\sum_{i} \sqrt{p_{i}}\left\|\Phi_{i}^{A}\right\rangle\left\|\Phi_{i}^{B}\right\rangle$
$T r_{2}\|\Psi\rangle\langle\psi\|=\sum_{i} p_{i}\left\|\Phi_{i}^{A}\right\rangle\left\langle\Phi_{i}^{A}\right\|$
$T_{1}\|\Psi\rangle\langle\Psi\|=\sum_{i} p_{i}\left\|\Phi_{i}^{B}\right\rangle\left\langle\Phi_{i}^{B}\right\|$

observations

- Notice that the spectrum (i.e. set of eigenvalues) of both reduced density matrices are the same

$$
\operatorname{Tr}_{2}|\psi\rangle\langle\psi|=\sum_{i} p_{i}\left|\Phi_{i}^{A}\right\rangle\left\langle\Phi_{i}^{A}\right|
$$

$$
T r_{1}|\psi\rangle\langle\psi|=\sum_{i} p_{i}\left|\Phi_{i}^{B}\right\rangle\left\langle\Phi_{i}^{B}\right|
$$

How do we compute the Schmidt decomposition?

- Nielsen and Chuang recommend the Singular Value Decomposition; very elegant
- Alternative ly, compute the partial traces, and diagonalize them in order to find the correct bases for each subsystem
- Or guess.

Other observations

- Read exercises 2.80, 2.81, 2.82 for other very important facts that can be proved easily using the Schmidt decomposition (we will discuss the se more later when relevant).

Bloch Sphere

- These 4 matrices form a basis for the 2×2 density matrices:
$I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], X=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \mathcal{Y}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right], Z=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
- So every density matrix can be written as

$$
\rho=\frac{1}{2}\left(I+a_{x} X+a_{y} \mathcal{Y}+a_{z} Z\right)
$$

Bloch $\mathcal{B a l l}$

- We associate with every 1-qubit state $\rho=\frac{1}{2}\left(I+a_{\chi} X+a_{y} \mathcal{Y}+a_{z} Z\right)$
the vector $\quad\left(a_{x}, a_{y}, a_{z}\right)$
- If $\rho=|\Psi\rangle\langle\Psi|$ for a pure state
$\left.|\Psi\rangle=e^{i \alpha}\left(\cos \left(\frac{\theta}{2}\right)|0\rangle+e^{i \varphi} \sin \left(\frac{\theta}{2}\right) 1\right\rangle\right)$
Then the corresponding vector is
$\left(a_{\chi}, a_{y}, a_{z}\right)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$

Bloch Sphere

- Notice that the vectors
$\left(a_{x}, a_{y}, a_{z}\right)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$
satisfy $\quad\left|a_{x}\right|^{2}+\left|a_{y}\right|^{2}+\left|a_{z}\right|^{2}=1$
i.e. pure states lie on the surface of the $\mathcal{B l o c h} \mathcal{B a l l}$. By convexity, mixed states lie within the Blocf $\mathcal{B a l l}$.

Bloch Sphere
- Notice that the vectors $\left(a_{x^{\prime}} a_{y^{\prime}}, a_{z}\right)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$ $\text { satisfy }\left\|a_{x}\right\|^{2}+\left\|a_{y}\right\|^{2}+\left\|a_{z}\right\|^{2}=1$ i.e. pure states lie on the surface of the $\mathcal{B l o c h}$ Ball. By conve xity, mixed states lie within the Bloch Ball.

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Bloch Ball
- Rotations about the $\hat{\chi}$ axis are denoted $\mathcal{R}_{t}(\theta)=e^{-i \theta x / 2}=\cos \left(\frac{\theta}{2}\right) I-i \sin \left(\frac{\theta}{2}\right) x=\left[\begin{array}{cc} \cos \left(\frac{\theta}{2}\right) & -i \sin \left(\frac{\theta}{2}\right) \\ -i \sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right) \end{array}\right]$ - Similar definitions for rotations about the \hat{y} and \hat{z} axes (section 4.2)

Bloch Ball

- We can define a rotation about any axis $\hat{n}=\left(n_{\chi}, n_{y}, n_{z}\right)$
$\mathcal{R}_{n}(\theta)=e^{-i \theta \hat{n} \cdot(x, y, z) / 2}$
$=\cos \left(\frac{\theta}{2}\right) I-i \sin \left(\frac{\theta}{2}\right)\left(n_{x} x+n_{y} y+n_{z} z\right)$

Bloch $\mathcal{B a l l}$

- Alternatively, we can describe these rotations as $\mathcal{R}_{\alpha, \varphi}(\theta)$ where \qquad
$|\Psi\rangle=\cos \left(\frac{\alpha}{2}\right)|0\rangle+e^{i \varphi} \sin \left(\frac{\alpha}{2}\right)|1\rangle$
$\left|\Psi^{\perp}\right\rangle=\sin \left(\frac{\alpha}{2}\right)|0\rangle-e^{i \varphi} \cos \left(\frac{\alpha}{2}\right)|1\rangle$
$\mathcal{R}_{\alpha, \varphi}(\theta)|\Psi\rangle=|\Psi\rangle$
$\mathcal{R}_{\alpha, \varphi}(\theta)\left|\Psi^{\perp}\right\rangle=e^{i \theta}\left|\Psi^{\perp}\right\rangle$

Arbitrary 1-qubit operations

- Theorem (Exercise 4.8): Any 1-qubit operation can be written in the form
$\mathcal{U}=e^{i \alpha} \mathcal{R}_{n}(\theta)$
for some axis \hat{n} and angle $\boldsymbol{\theta}$ (the "global phase" is not important...yet).

Arbitrary 1-qubit operations
- Theorem 4.1: Any 1-qubit operation
can be written in the form
$\mathcal{U}=e^{\text {id }} \mathcal{R}_{\mathcal{Z}}(\beta) \mathcal{R}_{y}(\gamma) \mathcal{R}_{\mathcal{Z}}(\delta)$
For some realnumbers $\alpha, \beta, \gamma, \delta$

\qquad
\qquad
\qquad can be written in the form
\qquad
\qquad
\qquad
\qquad

Arbitrary 1-qubit operations

- Corollary 4.2: Any 1-qubit operation can be written in the form
\qquad
$\mathcal{U}=e^{i \alpha} \mathcal{A} X \mathcal{B} X \mathcal{C}$
where $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are unitary operators satisfying $\mathcal{A} \mathcal{B C}=I$
(this comes in fandy when construction the controlled-U)

The controlled-Ul

- The controlled-U or $\mathcal{C}(\mathcal{U})$ corresponds \qquad to the operation
$\mathcal{C}(\mathcal{U})|0\rangle|\Psi\rangle=|0\rangle|\Psi\rangle$
$\mathcal{C}(\mathcal{U})|1\rangle|\Psi\rangle=|1\rangle \mathcal{U}|\Psi\rangle$
\qquad

(note that how we define the "global" phase of \mathcal{U} signific antly affects the $\mathcal{C}(\mathcal{U})$)

\qquad
\qquad

\qquad
\qquad
\qquad

\qquad

