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Introduction to Quantum 
Information Processing

Lecture 9

Michele Mosca

Overview

! Dirac Notation comment
! Partial Trace and Schmidt Decomposition
! The Bloch Ball, one-qubit gates, and 

controlled-U 

Dirac notation quirk
! When taking tensor products of 

subsystems, we can clarify which 
vectors correspond to which subsystem

21
ji! E.g. means system 1 is in state       

and system 2 is in state
! When computing the conjugate 

transpose, following standard matrix 
convention we would write

i

j

( )
2121

jiji =t
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Dirac notation quirk

! However, it is more common in physics 
to write (often without the subscripts)

( )
1221

ijji =t

! This way we can e.g. compute an inner 
product in the following way

( )

ljki

ljkilkij

lkijlkji

=

==

=

2222

21122121

t

Partial Trace
! Partial trace is the linear extension of 

the following map:

( ) ( )
kijljlki

ljTrkiljkiTr
=⊗=

⊗=⊗2

( ) ( )BATrBATr =⊗2

( )tlkjiljki =⊗

! In Dirac notation:

( ) ( ) ( )( ) ( )( )ttttt DBCADBCACDAB ⊗⊗=⊗⊗=⊗

! Note
! Can see this by recalling

Partial Trace using matrices
! Tracing out the 2nd system
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Partial Trace using matrices
! Tracing out the 1st system
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Schmidt decomposition 
(section 2.5)

! Theorem: If        is a pure state of a 
composite system AB, then there exists 
an orthonormal basis          for system A 
and           for system B, and non-
negative reals , so that  

ψ

{ }A
iΦ

{ }B
iΦ

{ }ip

B
i

A
i

i
ip ΦΦ∑=ψ

ii p=λ “Schmidt coefficients”

Schmidt decomposition 
trivial example

! E.g. 11=ψ

{ }0Φ,1Φ 10 == AA

{ }0,1 10 == pp

{ }0Φ,1Φ 10 == BB
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Schmidt decomposition 
almost trivial example

! E.g.
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Schmidt decomposition 
example

! E.g.
11
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Schmidt decomposition 
application

! It is very easy to compute the reduced 
density matrices given the Schmidt 
decomposition

B
i

A
i

i
ip ΦΦ∑=ψ

A
i

A
i

i
ipTr ΦΦ2 ∑=ψψ

B
i

B
i

i
ipTr ΦΦ1 ∑=ψψ
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observations
! Notice that the spectrum (i.e. set of 

eigenvalues) of both reduced density 
matrices are the same

A
i

A
i

i
ipTr ΦΦ2 ∑=ψψ

B
i

B
i

i
ipTr ΦΦ1 ∑=ψψ

How do we compute the 
Schmidt decomposition?

! Nielsen and Chuang recommend the Singular 
Value Decomposition; very elegant

! Alternatively, compute the partial traces, 
and diagonalize them in order to find the 
correct bases for each subsystem

! Or guess.

Other observations
! Read exercises 2.80, 2.81, 2.82 for other 

very important facts that can be proved 
easily using the Schmidt decomposition (we 
will discuss these more later when 
relevant).
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Bloch Sphere

! These 4 matrices form a basis for 
the 2x2 density matrices:
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! So every density matrix can be 
written as

( )ZaYaXaI
2
1

zyx +++=ρ

Bloch Ball

the vector 
)ZaYaXaI(

2
1

zyx +++=ρ
)a,a,a( zyx

! If for a pure state 

! We associate with every 1-qubit state 

ΨΨ=ρ















 θ+






 θ=Ψ ϕα 1

2
sine0

2
cose ii

Then the corresponding vector is
)cos,sinsin,cos(sin)a,a,a( zyx θϕθϕθ=

Bloch Sphere

satisfy

! Notice that the vectors 
)cos,sinsin,cos(sin)a,a,a( zyx θϕθϕθ=

1aaa 2
z

2
y

2
x =++

i.e. pure states lie on the surface of 
the Bloch Ball.  By convexity, mixed 
states lie within the Bloch Ball.
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Bloch Sphere
ẑ

x̂

ŷ
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10 +10 −

1i0 +

1i0 −

Mixed States
ẑ

x̂

ŷ
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1 )1100( +

1100 3
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2 +

Bloch Ball

( ) ( )
( ) ( ) 








=
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 θ==θ θθ−

θ−θ
θ−

2
cos

2
sini

2
sini

2
cos2/Xi

x X
2

siniI
2

cose)(R

! Rotations about the    axis are 
denoted  

x̂

! Similar definitions for rotations 
about the     and      axes (section 4.2)ŷ ẑ



8

Bloch Ball

( )ZnYnXn
2

siniI
2

cos

e)(R

zyx

2/)Z,Y,X(n̂i
n̂

++





 θ−






 θ=

=θ ⋅θ−

! We can define a rotation about any axis 
)n,n,n(n̂ zyx=

Bloch Ball

! Alternatively, we can describe these 
rotations as where

⊥θ⊥
ϕα Ψ=Ψθ i
, e)(R

)(R , θϕα

1
2

cose0
2

sin i 
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 α=Ψ ϕ⊥

1
2

sine0
2

cos i 





 α+






 α=Ψ ϕ

Ψ=Ψθϕα )(R ,

Arbitrary 1-qubit operations

for some axis      and angle       (the 
“global phase” is not important… yet).

)(ReU n̂
i θ= α

! Theorem (Exercise 4.8): Any 1-qubit 
operation can be written in the form

n̂ θ
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Arbitrary 1-qubit operations

)(R)(R)(ReU zyz
i δγβ= α

! Theorem 4.1: Any 1-qubit operation 
can be written in the form

δγβα ,,,For some real numbers

Arbitrary 1-qubit operations

AXBXCeU iα=

! Corollary 4.2: Any 1-qubit operation 
can be written in the form

where A, B, C are unitary operators 
satisfying IABC =

(this comes in handy when construction 
the controlled-U)

The controlled-U

Ψ=Ψ 00)U(C

! The controlled-U or C(U) corresponds 
to the operation

Ψ=Ψ U11)U(C

U
denoted

(note that how we define the “global” phase 
of U significantly affects the C(U))
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The controlled-U
! We can realize the controlled-U with 

the following network

C B A









αie0

01

! So controlled-NOT plus all 1-qubit 
gates allow us to implement any 
controlled-U gate

The controlled-U
! It helps to observe that
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