

Quantum Computing Lecture 14a (notes on QEC)

Michele Mosca

Classical Error Correcting Codes

- Suppose errors in our physical system for storing 0 and 1 cause each physical bit to be toggled independently with probability p
- We can reduce the probability of error to be in O(p²) by using a "repetition code"
- e.g. : encode a logical 0 with the state 000 and a logical 1 with the state 111

Reversible networks for encoding and decoding

Classical Error Correcting Codes

- After the errors occur, decode the logical bits by taking the majority answer of the three bits and correct the encoded bits
- So $000 \rightarrow 000$ $111 \rightarrow 111$ $001 \rightarrow 000$ $011 \rightarrow 111$ $010 \rightarrow 000$ $101 \rightarrow 111$ $100 \rightarrow 000$ $110 \rightarrow 111$

Classical Error Correcting Codes

- As long as less than 2 errors occurred, we will keep the correct value of the logical bit
- The probability of 2 or more errors is

$$3p^{2}(1-p) + p^{3} = 3p^{2} - 2p^{3} \in O(p^{2})$$

(which is less than p if $p < \frac{1}{2}$)

Reversible network for error correction

 If s₁s₂ = 00 then no error occurred
Otherwise, the error occurred in bit j where j = 2s₁ + s₂

Equivalently

Stabilizer measurement??

• This is implementing a Z_1 measurement (interpreting 0 as +1, and 1 as -1)

Stabilizer measurement??

• This is implementing a Z_1Z_2 measurement

Stabilizer measurement??

• This is implementing a X_1X_2 measurement

Notation clarification

• For an n-qubit system Z_j denotes $\underbrace{I \otimes I \otimes \cdots \otimes I}_{j-1} \otimes Z \otimes \underbrace{I \otimes \cdots \otimes I}_{n-j}$

E.g. n=3, then

 $Z_1 Z_2 = (Z \otimes I \otimes I) (I \otimes Z \otimes I) = (Z \otimes Z \otimes I)$

Perform operations on logical bits

• e.g. NOT gate

Perform operations on logical bits

• e.g. c-NOT gate

Quantum Error Correcting Codes

• e.g. : encode a logical $|0\rangle$ with the state $|000\rangle$ and a logical $|1\rangle$ with the state $|111\rangle$

Quantum network for encoding

 $(\alpha |0\rangle + \beta |1\rangle) 0\rangle |0\rangle \rightarrow \alpha |0\rangle |0\rangle + \beta |1\rangle |1\rangle |1\rangle$

Quantum network for correcting errors

Equivalently

Perform operations on logical bits

e.g. Hadamard gate

