Quantum Computing Lecture 14a (notes on QEC)

Michele Mosca

Classical Error Correcting Codes

- Suppose errors in our physical system for storing 0 and 1 cause each physical bit to be toggled independently with probability p
- We can reduce the probability of error to be in $O\left(p^{2}\right)$ by using a "repetition code"
- e.g. : encode a logical 0 with the state 000 and a logical 1 with the state 111

Reversible networks for encoding and decoding

Classical Error Correcting Codes

- After the errors occur, decode the logical bits by taking the majority answer of the three bits and correct the encoded bits
- So $000 \rightarrow 000$
$111 \rightarrow 111$
$001 \rightarrow 000$
$011 \rightarrow 111$
$010 \rightarrow 000$
$101 \rightarrow 111$
$100 \rightarrow 000$
$110 \rightarrow 111$

Classical Error Correcting Codes

- As long as less than 2 errors occurred, we will keep the correct value of the logical bit
- The probability of 2 or more errors is $3 p^{2}(1-p)+p^{3}=3 p^{2}-2 p^{3} \in O\left(p^{2}\right)$
(which is less than p if $p<\frac{1}{2}$)

Reversible network for error correction

- Assume that $e_{3}+e_{2}+e_{1} \leq 1 \quad e_{i} \in\{0,1\}$

- If $s_{1} s_{2}=00$ then no error occurred
- Otherwise, the error occurred in bit j where $\mathrm{j}=2 \mathrm{~s}_{1}+\mathrm{s}_{2}$

Equivalently

Stabilizer measurement??

- This is implementing a Z_{1} measurement (interpreting 0 as +1 , and 1 as -1)

Stabilizer measurement??

- This is implementing a $Z_{1} Z_{2}$ measurement

Stabilizer measurement??

This is implementing a $X_{1} X_{2}$ measurement

Notation clarification

- For an n-qubit system Z_{j} denotes

$$
\underbrace{I \otimes I \otimes \cdots \otimes I \otimes}_{j-1} \otimes \otimes \underbrace{I \otimes \cdots \otimes I}_{n-j}
$$

- E.g. $n=3$, then
$Z_{1} Z_{2}=(Z \otimes I \otimes I)(I \otimes Z \otimes I)=(Z \otimes Z \otimes I)$

Perform operations on logical bits

- e.g. NOT gate

Perform operations on logical bits

- e.g. c-NOT gate

Quantum Error Correcting Codes

- e.g. : encode a logical $|0\rangle$ with the state $|000\rangle$ and a logical |1> with the state |111〉

Quantum network for encoding

$(\alpha|0\rangle+\beta|1\rangle) 0\rangle 0\rangle \rightarrow \alpha|0\rangle 0\rangle\langle 0\rangle+\beta|1\rangle 1\rangle|1\rangle$

Quantum network for correcting errors

- Assume that $e_{3}+e_{2}+e_{1} \leq 1 \quad e_{i} \in\{0,1\}$

$\alpha\left|e_{3}\right\rangle\left|e_{2}\right\rangle\left|e_{1}\right\rangle+\beta\left|1 \oplus e_{3}\right\rangle\left|1 \oplus e_{2}\right\rangle\left|1 \oplus e_{1}\right\rangle \rightarrow$ $\alpha|0\rangle|0\rangle|0\rangle+\beta|1\rangle|1\rangle 1\rangle$

Equivalently

Perform operations on logical bits

- e.g. Hadamard gate

