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Summary
Consider the problem of estimating the median ofN items to a precisionε, i.e. the estimateµ should be such that,

with a large probability, the number of items with values smaller thanµ is less than  and those with values

greater thanµ is also less than . Any classical algorithm to do this will need at least  samples.

Quantum mechanical systems can simultaneously carry out multiple computations due to their wave like properties.

This paper gives an  step algorithm for the above problem.

1 Introduction
1.1 Statistical Problems Statistical problems involve processing large amounts of data. By their nature quantum
mechanical systems can simultaneously carry out multiple computations and if adjusted properly, the overall compu-
tation can be significantly faster. [Shor94] used the fact that the periodicity of a function can be obtained rapidly by a
quantum mechanical algorithm to develop a logarithmic time integer factorization algorithm. [Gro96] presented an

 step quantum mechanical algorithm to examine an unsorted database containing  items, for a single item
that satisfies a particular property. The next step is to explore what statistics can be obtained by quantum mechanical
algorithms, faster than is possible with classical algorithms.

Consider an experiment that can give two results with slightly different probabilities of  and

 respectively where the value ofε is unknown. The experiment is to be repeated several times in order to esti-

mateε. If the experiment is repeatedν times, it can be easily shown that, with a large probability, the number of

occurrences of the first event will lie in the range . Therefore in order for the uncertainty due to

to become less than , must be smaller than , equivalentlyν must be greater than .

Therefore in order to estimate the median with a precision ofε (i.e. the number of items with values smaller thanµ is

less than  and those with values greater thanµ is also less than ) will need  samples

[Wilks43].
1.2 Quantum mechanical algorithms A good starting point to think of quantum mechanical algorithms is
probabilistic algorithms [BV93] (e.g. simulated annealing). In these algorithms, instead of the system being in a spec-
ified state, it is in a distribution over various states with a certain probability of being in each state. At each step, there
is a certain probability of making a transition from one state to another. The evolution of the system is obtained by
premultiplying this probability vector (that describes the distribution of probabilities over various states) by a state
transition matrix. Knowing the initial distribution and the state transition matrix, it is possible in principle to calculate
the distribution at any instant in time.

Just like classical probabilistic algorithms, quantum mechanical algorithms work with a probability distribu-
tion over various states. However, unlike classical systems, the probability vector does not completely describe the
system. In order to completely describe the system we need theamplitude in each state which is a complex number.
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The evolution of the system is obtained by premultiplying this amplitude vector (that describes the distribution of
amplitudes over various states) by a transition matrix, the entries of which are complex in general. The probabilities
in any state are given by the square of the absolute values of the amplitude in that state. It can be shown that in order
to conserve probabilities, the state transition matrix has to be unitary [BV93].

The machinery of quantum mechanical algorithms is illustrated by discussing the three operations that are
needed in the algorithm of this paper. The first is the creation of a configuration in which the amplitude of the system

being in any of the2n basic states of the system is equal; the second is the Fourier transformation operation and the
third the selective rotation of different states.

A basic operation in quantum computing is that of a “fair coin flip” performed on a single bit whose states

are 0 and 1 [Simon94]. This operation is represented by the following matrix: . A bit in the state 0 is

transformed into a superposition in the two states: . Similarly a bit in the state 1 is transformed into

, i.e. the magnitude of the amplitude in each state is  but thephase of the amplitude in the state 1 is

inverted. The phase does not have an analog in classical probabilistic algorithms. It comes about in quantum mechan-
ics since the amplitudes are in general complex. This results ininterferenceof different possibilities as in wave
mechanics and is what distinguishes quantum mechanical systems from classical systems.

In a system in which the states are described byn bits (it has2n possible states) we can perform the transfor-
mationM on each bit independently in sequence thus changing the state of the system. The state transition matrix rep-

resenting this operation will be of dimension . In case the initial configuration was the configuration with all

n bits in the first state, the resultant configuration will have an identical amplitude of  in each of the2n states. This

is a way of creating a distribution with the same amplitude in all2n states.

Next consider the case when the starting state is another one of the2n states, i.e. a state described by ann bit
binary string with some 0s and some 1s. The result of performing the transformationM on each bit will be a superpo-
sition of states described by all possiblen bit binary strings with amplitude of each state having a magnitude equal to

 and sign either+ or −. To deduce the sign, observe that from the definition of the matrixM, i.e. ,

the phase of the resulting configuration is changed when a bit that was previously a 1 remains a 1 after the transfor-
mation is performed. Hence if  be then-bit binary string describing the starting state and  then-bit binary string

describing the resulting string, the sign of the amplitude of  is determined by the parity of the bitwise dot product of

 and , i.e. . This transformation is referred to as the Fourier transformation [DJ92]. This operation is
one of the things that makes quantum mechanical algorithms more powerful than classical algorithms and forms the
basis for most significant quantum mechanical algorithms.

The third transformation that we will need is the selective rotation of the phase of the amplitude in certain

states. The transformation describing this for a 3 state system is of the form:  where  and

 are arbitrary real numbers. Note that, unlike the Fourier transformation and other state transition matrices,

the probability in each state stays the same since the square of the absolute value of the amplitude in each state stays
the same.
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2(a) The Abstracted Problem Consider the problem described in the following figure: there are a number of
states S1,S2,..SN, each of which has a value V(S) associated with it.

It should be clear that if we are able to solve the problem described in the above figure, then by repeating it with
differentµ, a logarithmic number of times, we can obtain the median. Next consider the problem described in the fol-
lowing paragraph in which a range forε is specified and it is required to estimate ε in this range with a specified pre-
cisionθ. An algorithm for this problem will be presented in this paper. A little thought will show that the problem in
the above figure, and hence the problem of finding the median, can be easily transformed to this problem (this is dis-
cussed further in the appendix).

Let a system containN = 2n states which are labelled S1,S2,..SN. These2n states are represented asn bit strings.
Let each state, S, have a value, V(S), associated with it. A quantityµ is given that partitions the items such that the

number of states, S, with value, V(S), less thanµ, is equal to , where  is known to be in the range

 for a specified  (where  is assumed to be smaller than 0.1). The problem is to estimate  with a

precision ofθ (whereθ is positive) i.e. ifε1 be the estimate of , then with a probability approaching 1, the true

lies in the range: . The algorithm of this paper solves the problem in  time

steps. The problem of finding the median is easily transformed to this, as indicated in the appendix (incidentally, even

to solve this abstracted problem classically, will need a time  for the same reason indicated in section 1.1).

2(b) Some notation In addition to the symbols defined in section 2(a) above, the following notation will be used:

(i) In all steps of the algorithm, the amplitudes of all states, S, with values V(S) <µ are the same, this amplitude will
be denoted byk; similarly in all the steps of the algorithm, the amplitudes of all states, S, with V(S) >µ are the same,
this will be denoted by l. The amplitudes in states, S, with V(S) <µ will be referred to as the “k amplitudes”; the
amplitudes in states, S, with V(S) >µ will be referred to as the “l  amplitudes”.

(ii) The heart of the algorithm is the loop in step 1(iv) of the algorithm in the next section. This increases thek ampli-
tudes in each repetition of the loop. This is done in a way so that the increase is approximately proportional toε. After

 repetitions of the loop, the value of thek amplitude is denoted by  & the value of thel amplitude is denoted

by .

(iii) As mentioned in section 1.2, the probabilities are given by the square of the absolute values of the amplitudes.
Hence the sum of the squares of the absolute values of the amplitudes in all states must be unity. However, in this
paper we take the sum of the squares of the absolute values in the states to beN, whereN is the number of states - nor-

malized amplitudes can be obtained by dividing the amplitudes given in this paper by .

(iv) O(n) & Ω(n) (this is standard notation) A function is said to be  if there exists a constant  such that

for all  greater than some specified , . Similarly a function is said to be  if there exists a

constant  such that for all  greater than some specified , .
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3 Algorithm This algorithm solves the problem described in 2(a): given , where , it finds an

estimate of  such that ifε1 be this estimate, then with a high probability, the true  lies in the range:

.

(1) Repeat the steps, (i)....(iv),  times.

(i) Initialize the system to the distribution
, i.e. there is the same

amplitude to be in each of the N states. This
distribution can be obtained in  steps
as discussed in section 1.2.

(ii) In case the system is in a state with V(S) >µ,

rotate the phase by  radians.

(iii) Apply the shift transformS which is defined by
the  matrixS as follows:

, if ; .

This shift transform,S, can be implemented as
, whereF is the Fourier Transform

 Matrix as discussed in section 1.2 andR is:

 if  &  if

&  if .

As discussed in section 1.2, the Fourier
transformation matrixF is defined as

, where  is the

binary representation of , and  is the

bitwise dot product of the n bit strings  & .
(iv) Repeat the following steps - (a), (b), (c) & (d),

 times.

(a)  In case the system is in a state, S, with
 V(S) <µ, rotate the phase by  radians.

(b) Apply the diffusion transformD which is
defined by the matrixD as follows:

 if  & .

This diffusion transform,D, can be
implemented as , whereF is
the Fourier Transform Matrix, as
discussed in (iii), andT is defined as:

 if  &  if

&  if .
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    In each repetition of loop (1)(iv)(a)...(d)
thek amplitude increases byΩ(ε).
    Therefore inβ repetitions, thek amplitude
becomesΩ(βε).

 Step(1)(ii): States with values aboveµ have the
                    phases of their amplitudes rotated by  900.
                    The amplitude vector becomes (1, 1, i, i).

µ

Step (1)(i): States with values above & belowµ,
                   have the same amplitudes.
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(c) In case the system is in a state S, with
 V(S) >µ, rotate the phase by  radians.

(d) Apply the diffusion transformD as
described in (b) above.

(v) Sample and record the resulting state.

(2) The relative probability of the system being in a state

with V(S) <µ is . In case the

fraction,f, of theα samples (obtained in step 1(v)
 above) be calculated, then with a confidence level

greater than , the quantity

 will lie in the range

to  (theorem 8). Knowing these bounds for

the function ;  can be bounded

within a range of  with the same confidence

level (theorem 9). As defined in step 1(iv),

. It follows that the maximum expected

error in  will be .

4. How does the algorithm work? Step 1(i) initializes the system so that there is an equal amplitude to

be present in all of the  states. In step 1(ii), states with value greater thanµ, have the phases of their ampli-

tudes rotated by  radians. Next, in step 1(iii), ashift transform is carried out by which the systemshifts to the states

with value greater thanµ, i.e. thek amplitudes are approximately zero and thel amplitudes are of magnitude approx-

imately . In case there were an equal number of states with values above and belowµ, the amplitude in states with
value smaller thanµ will be zero. In general, if the difference in the number of states above and belowµ is Nε, the
amplitudes in states with values smaller thanµ will be proportional toε. This is somewhat interesting since such a
redistribution could not be carried out classically. However the probabilities are proportional to the squares of the
amplitudes; therefore if we try to estimateε by sampling the distribution and counting the number of samples with

values belowµ, it will take  samples before we obtain even a single sample with value belowµ. As discussed

in the introduction (section 1.1), this time is of the same order as would be required to estimateε classically.
This paper presents a technique by which the magnitudes of thek amplitudes can be increased by an additive

constant of  in each iteration sequence. Therefore by repeating this iteration sequence  times, the

magnitudes of thek amplitudes can be made to be . By repeating this process  times and observing

the fraction of samples with values less thanµ,  can be estimated with a maximum error of  and thus  can
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be estimated with a maximum error of . The heart of the algorithm is this iteration sequence for increasing

the magnitudes of thek amplitudes by  and by a quantity proportional to . This process is carried out in
steps 1(iv)(a)...(d) of the following algorithm, its logic is discussed in the rest of this section.

 One key step in the loop in steps 1(iv)(a)...(d)  is the diffusion transformD. By means of theorems 4(a) & 4(b)
and by using superposition, it is possible to study the effect of the diffusion transform on arbitrary values ofk & l.

Theorem 4 (a) - In case the initial amplitudes be , , then after applying the diffusion transformD, the

amplitudes become , .

Theorem 4 (b) - In case the initial amplitudes be , , then after applying the diffusion transformD, the

amplitudes become , .
Using theorems 4(a) & (b), it is possible to study the evolution of arbitrary initial amplitudes by using superposi-

tion. Let the initial distribution before steps 1(iv)(a)...(d) be given by  & .

(a) After step 1(iv)(a), the distribution becomes  & .
(b) The distribution after step 1(iv)(b) is obtained by theorems 4(a) & (b) and by superposition. Applying this

gives:  & .
(c) The distribution after step 1(iv)(c) is obtained by changing the signs of thel amplitudes. This gives:

 & .
(d) The distribution after step 1(iv)(d) is obtained by theorems 4(a) & (b) and by superposition. Applying this

gives:  & . This is theorem 7.

Theorem 7 - In case the initial amplitudes before step 1(iv)(a) of the algorithm be  & , then after steps

1(iv)(a)...(d), the new amplitudes,k & l are  and

respectively.

As in [BBHT96], the evolution of the amplitudes in successive repetitions of the loop can be followed by the follow-
ing corollary:

Corollary 7.2 - For the algorithm of section 2, thek amplitudes afterr repetitions of the loop in step 1(iv) are given

by , where  and  is defined by the following equation:

.

By definition, ; therefore for small , . For small values of ,  &

. , as defined in cor. 7.2 above, is approximately equal to 1 for small . Therefore by cor. 7.2,

. Therefore in  repetitions of the loop of 1(iv),  and it is also proportional to

. Thus by repeating the experiment described in step 1 of the algorithm  times, it is possible to estimate

with a maximum relative error of .
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5 Proofs The following section proves that the system discussed in section 3 is indeed a valid quantum mechani-

cal system and it gives the desired result with a probability O(1). The proofs are divided into three parts. First, it is
proved that the system is a valid quantum mechanical system; second, that in each repetition of the loop of step 1(iv),

the magnitudes of thek amplitudes increases by ; finally it is proved that by calculating the fraction of the

 samples with values less than , the parameter  can be estimated with a precision of .

5(a) Preliminary results In order to prove that the algorithm of section 3 is a valid quantum mechanical system
we need to prove thatD & S are unitary and can be implemented as a product of local transition matrices. The diffu-

sion transformD & the shift transform S, are defined by the  matricesD & S, as follows:

(5.0) , if  & .

(5.1) , if  & .

SinceD & S can be implemented as products of unitary matrices (as required in steps 1(iv)(b) and 1(iii) respectively,
and as proved in theorems 2(a) and 2(b)), bothD & S can be seen to be unitary. However, since a direct proof is short
and simple, a few lines will be devoted to this. The proof for unitarity of the matrixD is the same as in [Gro96].

Theorem 1(a) - D is unitary.
Proof - For a matrix to be unitary it is necessary and sufficient to prove that the columns are orthonormal. The magni-

tude of each column vector,q, is , q = 1,2...n. Substituting from (5.0), it follows that this is

which is equal to 1. The dot product of two column vectors is . This is

.

Theorem 1(b) - S is unitary.

Proof -The magnitude of each column vector,q, is ,q = 1,2...n.Substituting from (5.1), it follows that this

is which is equal to 1. The dot product of two distinct column vectors is

where  denotes the complex conjugate of . Evaluating  gives:

 which is equal to zero.
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The wayD & S are presented above, they are not local transition matrices since there are transitions from each state to
all N states. Using the Fourier transformation matrix as defined in section 3, they can be implemented as a product of
three unitary transformations, each of which is a local transition matrix.
Theorem 2(a) - D can be expressed as , whereF is the Fourier Transform Matrix as mentioned in section

1.2, andR is defined as follows:  if  &  if  &  if .

Proof - We evaluateFTF and show that it is equal toD. As discussed in section 3, , where

is the binary representation of , and denotes the bitwise dot product of the twon bit strings  and .T can be

written as  where ,  is the identity matrix and ,  if . It is

easily proved (it follows since the matrixM, as defined in section 1.2, is its own inverse) thatFF=I  and hence

. We next evaluate . By standard matrix multiplication .

Using the definition ofT2, it follows that . Thus all elements of the

matrixD2 equal . AddingD1 andD2 the result follows.

Theorem 2(b) - S can be expressed as , whereF is the Fourier Transform Matrix as mentioned in section

1.2, andR is defined as follows:  if  &  if  &  if .

Proof - We evaluateFRF and show that it is equal toS. As discussed in section 3, , where

is the binary representation of , and denotes the bitwise dot product of the twon bit strings  and .R can be

written as  where ,  is the identity matrix (with ones on the diagonal) and ,

 if . As mentioned in theorem 2(a),FF=I  and hence . We next evaluate

. By standard matrix multiplication . Using the definition ofR2, it follows

that . Thus all elements of the matrixS2 equal

. AddingS1 andS2 the result follows.
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5 (b) Loop of step 1(iv) Theorems 5,6 & 7 prove that the magnitudes of the amplitudes in states with values

smaller than µ (i.e. the k amplitudes) increase by  as a result of each repetition of the loop in steps

1(iv)(a)...(d). Hence in  repetitions of the loop, the amplitudes of those states will attain a value .

Theorem 3 - After step 1(iii) of the algorithm, the state vector is as follows: , .

Proof - After step 1(i), the amplitudes in all states are equal, i.e. , ; after step 1(ii), thel amplitudes have

their phase rotated by  radians and the amplitudes become , . The matrixSfor the shift transform is an

square matrix defined as follows: , if  & .

The amplitudesk & l after step 1(iii) thus become:

Theorem 4 (a) - In case the initial amplitudes are , , then after applying the diffusion transformD, the

amplitudes become , .

Proof -As mentioned before (4.0), the diffusion transformD is defined by the  matrixD as follows:

(5.0) , if  & .

Therefore the amplitudes after applyingD become:

.

Theorem 4 (b) - In case the initial amplitudes are , , then after applying the diffusion transformD, the

amplitudes become , .
Proof -As in theorem 4(a) above, the amplitudes afterD become:

.

As is well known, in a unitary transformation the total probability is conserved - this is proved for the particular case
of the diffusion transformation. This enables us to follow the evolution of the algorithm while keeping track of only
one of the two quantitiesk or l, not both.
Theorem 5 - In case the initial amplitudes be , , then after applying the diffusion transformD, the new

amplitudes ,  satisfy .

Proof -Using theorems 4(a) & 4(b), it follows by superposition that the new amplitudes after the diffusion transform,

D, are given by  & . Calculating , the result

follows.
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In order to follow the evolution of thek & l amplitudes due to successive repetitions of the loop in step 1(iv) (which
is done in theorem 7), we first prove theorem 6:
Theorem 6 (a) - In case the initial amplitudes before step (a) of the algorithm be , , then after steps (a),

(b), (c) & (d), the amplitudes are , .

Proof - After step (a), the amplitudes become , . It follows by theorem 4(a) that after step (b) the

amplitudes become , ; after step (c) the amplitudes become , . Using the-
orem 4(a) & 4(b), it follows by superposition that after step (d), the amplitudes are

 & .

Theorem 6 (b) - In case the initial amplitudes before step (a) of the algorithm be , , then after steps (a),

(b), (c) & (d), the amplitudes are , .

Proof - After step (a), the amplitudes stay unchanged as , . It follows by theorem 4(b) that after step

(b) the amplitudes become , ; after step (c) the amplitudes become , . Using

theorems 4(a) & 4(b), it follows that after step (d), the amplitudes are  &

.

Finally using theorem 6, we can follow the evolution of thek & l amplitudes due to successive repetitions of the loop
in step 1(iv).

Theorem 7 - In case the initial amplitudes before step (a) of the algorithm be  & , then after steps (a), (b), (c) &

(d), the new amplitudes,k & l are  and .

Proof - Using theorem 6(a) & 6(b), it follows by superposition that the amplitudes after steps (a), (b), (c) & (d) are

given by  & .

As in [BBHT96], the evolution of the state vector is obtained in terms of the sin & cos functions:

Corollary 7.1 - In case the initial amplitude be  and  where ; then afterr repe-

titions of the loop 1(iv), ,  where .

Proof - We prove the result by induction. By the initial conditions, the result clearly holds for . Assume it to be

true for a particular . We show that it holds for . By theorem 7: . By

the induction hypothesis, , . Expressing the transformation matrix in terms of

 and  from the definitions in the statement of the corollary, it follows that:

. By trigonometric identities for the sum of the sine and cosine functions:
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=



. Hence . Thus by

induction, the corollary holds for allr.

Corollary 7.2 - For the algorithm of section 2, thek amplitudes afterr repetitions of the loop in step 1(iv) are given
by .

Proof - The initial amplitudes are  & . The result follows by cor. 7.1 and superposition.

Corollary 7.3 - There exists a number  such that .

Proof - By definition (in cor. 7.1), ; therefore for small , . Also for small values of

,  & ; assuming small , it follows from the definition of  in cor. 7.1 that . Therefore

by cor. 7.2, .

5(c) Estimating : In case the probability of an event is estimated by carrying out  identical experiments,

it follows by the law of large numbers, that the maximum expected error in the estimate is . By the argument

before cor. 7.3, the amplitude of the system being found in states, S, with V(S) <µ is , the probability is pro-

portional to the square of the amplitude and is hence ; since the experiment of section 2 is

repeated  times, the maximum expected error in  is ; i.e.

where  (this is proved in theorem 8). Equivalently where

, hence  can be estimated with a precision of  as desired in section 2(a) (proved in theorem 9).

In order to prove theorem 8, we first state a version of the well known law of large numbers from probability theory:

Lemma 8 - In an experiment, let the probability of the eventA bep, the probability of the complementary event

will be . In  repetitions of the experiment, the fraction of occurrences ofA lies between  and

 with a probability of at least .

Proof - Omitted.

Theorem 8 - In case  samples be obtained (as described in step 1 of the algorithm) and a fractionf have

a value less thanµ, then with a confidence level greater than , the quantity

lies in the range  to .
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Proof - By the definition of , it follows that the probability of each state with  is . Since

there are  such states, it follows that the combined probability of all these states is .

Using lemma 8, with the eventA being the event corresponding to the occurrence of a sample with value smaller than
, the theorem follows.

Next we show that the value of  can be derived with a maximum expected error of  from the estimate of

, which was obtained in step 2 of the algorithm from the fraction of samples with values less than

. For this we prove a preliminary lemma:

Lemma 9 - Let a andb be two arbitrary real numbers such that . Let  and the derivativef ’(x)

at everyx, such that , is greater thand (where ). Then .

Proof - By the remainder theorem, , for somex such that . Therefore

.

Theorem 9 - Let the functionf(ε) be . Let  where , .

Then .

Proof - Follows by these steps:

(i)    By cor. 7.2, , , .

(ii) .

(iii) By lemma 9, . Therefore .

(the last step in (iv) follows by using cor. 7.2 by which  & by the problem specification by which )

Therefore in case the value ofε be estimated from the fraction of samples obtained in step 1(iv) with values less than

µ (as described in step 2); then with a confidence level greater than ,ε will lie within

 of the predicted value.

kβ ε( ) V S( ) µ<
kβ ε( ) 2

N
---------------------

N
2
---- 1 ε+( ) 1

2
--- kβ ε( ) 2

1 ε+( ) 
 

µ

ε O θε( )

kβ ε( ) 2
1 ε+( )

µ
a b< ∆f f b( ) f a( )–=

a x b< < d 0> b a
∆f
d
-----<–

f b( ) f a( )– f
,

x( ) b a–( )= a x b< <
f b( ) f a( )– d b a–( )>

1
2
--- kβ ε( ) 2

1 ε+( ) 
 

f b( ) f a( )– 2κθ= βa 0.1< βb 0.1<

b a– 10 000κθε0,<

kβ ε( ) 2 γ 1 ε+( ) βφ ε βφcos+sin
2 γ2 βφsin

2
+= φ 2ε≅ γ 1 ε–≅

ε∂
∂

kβ ε( ) 2
1 ε+( ) 

 
ε∂

∂ 2 βφsin( ) 2
 
 

ε∂
∂ 8 βε( ) 2

 
 

≅ ≅ 16β2ε=

b a–
f b( ) f a( )–

min f
,

x( )
--------------------------------< b a–

2κθ

8β2ε
------------< κθ

4β2ε
------------

κθ

4β2ε0
2

---------------
ε0
2

ε2
-----

 
 
 
 

ε κθ

4
1
20
------ 

  2
------------------- 10( ) 2ε<= =

β 1
20ε0
----------->

ε0
ε
----- 10<

1 2 2κ2
– 

 
exp– 

 

10 000κθε0,



8 Appendix The algorithm described in this paper actually measures the probability which is approximately

proportional to . This will give two estimates for - one a positive range and the other a negative range. Just

from this measurement, it is not possible to tell the sign of . However, the sign of  may be easily deduced by

repeating the algorithm with a slightly perturbed value of the thresholdµ and observing the changes in the estimates

of . Denote the subroutine that returns this estimate for  (with the proper sign), given  &  by

.

The notation used in this appendix is the same as that used in the paper and discussed in section 2(b), i.e.µ is the
threshold,ε is the fractional difference in the number of elements with values above and belowµ,  is the precision

with which  needs to be estimated.

(i) Estimating the number of elements above a general threshold The problem discussed previously

in the main paper assumes that bothµ and  are given. In case, just the thresholdµ is given but not  and , the

algorithm described in this paper could still be used by keeping  fixed as a small quantity (e.g. 0.1) and initially

choosing a high value of  (e.g. 0.1) and reducing it by a constant factor in each repetition. The value of the estimate

that the subroutine  returns will be close to zero until the hypothesized  becomes of the same

order as the actual .  The following paragraph gives a more formal description of .

Denote this subroutine that returns this estimate for , given only  &  by ; this calls the

previously defined subroutine  a logarithmic number of times.

// Note that this subroutine has just two parameters,

{ // unlike the one discussed earlier, which has three.

{ // It is assumed that both  &  are greater than 0.1.

if  ( )     break;

else

}

}

βε 2 ε
ε ε

ε ε ε0 θ, µ

ε e– st µ ε0 θ, ,( )

θ
ε

ε0 ε0 θ

θ
ε0

ε e– st µ ε0 θ, ,( ) ε0

ε ε e– st µ εmin,( )

ε εmin µ ε e– st µ εmin,( )

ε e– st µ ε0 θ, ,( )

ε e– st µ εmin,( )

θ 0.1 ε0, 0.1= =

ε εmin

est ε e– st µ ε0 θ, ,( )=

est 0.2ε0>

ε0 est 0.5×=

while ε0 εmin>( )

return est( )



(ii) Estimating the median The median is estimated by using the routine of (i), i.e. , as a sub-

routine in a binary search algorithm. It requires a logarithmic number of repetitions of .

median (min, max, )

{
lower = min;
upper = max;
while (upper - lower > 1 )
{

if (est > 0)

else
}
return (µ)

}
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