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Overview of Lecture 16Overview of Lecture 16
� The GHZ �paradox�
� The Bell inequality and its violation:

� Physicist�s perspective
� Computer Scientist�s perspective

� The magic square game
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preliminaries
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How does quantum information affect the 
communication costs of information 
processing tasks?

Quantum information can apparently be 
used to substantially reduce computation
costs for a number of interesting problems

We explore this issue ...
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Entanglement and signalingEntanglement and signaling
1100 2

1
2

1 +Entangled states, such as                          ,

Any operation performed on one system has no affect on 
the state of the other system (its reduced density matrix)

qubit qubit

can be used to perform some intriguing feats, such as 
teleportation and superdense coding

But they cannot be used to �signal instantaneously�
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Alice Bob

Basic communication scenarioBasic communication scenario

Resources

x1x2 … xn

Goal: convey n bits from Alice to Bob

x1x2 … xn
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Basic communication scenarioBasic communication scenario
Bit communication:

Cost: n

Qubit communication:

Cost: n [Holevo�s Theorem, 1973]

Bit communication    
& prior entanglement:

Cost: n (can be deduced) Cost: n/2 superdense coding
[Bennett & Wiesner, 1992]

Qubit communication 
& prior entanglement:
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nonlocality
a là GHZ
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GHZGHZ scenarioscenario

Alice Bob Carol

Input: r ts

Output: a cb

Rules of the game:
1. It is promised that  r⊕ s⊕ t = 0
2. No communication after inputs received

3. They win if a⊕ b⊕ c = r∨ s∨ t
1110
1101
1011
0000

a⊕ b⊕ crst

← r ← ¬s ← 1

101
111
001
011
abc

[Greenberger, Horne, Zeilinger, 1980]
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No perfect strategy for No perfect strategy for GHZ GHZ 
Input: r ts

Output: a cb

1110
1101
1011
0000

a⊕ b⊕ crst
General deterministic strategy: 
a0, a1, b0, b1, c0, c1

Winning conditions:
a0 ⊕ b0 ⊕ c0 = 0 
a0 ⊕ b1 ⊕ c1 = 1 
a1 ⊕ b0 ⊕ c1 = 1 
a1 ⊕ b1 ⊕ c0 = 1

Has no solution, 
thus no perfect 
strategy exists
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GHZGHZ: preventing communication: preventing communication
Input: r ts

Output: a cb

Input and output events can be space-like separated: 
so signals at the speed of light are not fast enough for cheating

What if Alice, Bob, and Carol still keep on winning?
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��GHZGHZ Paradox� explainedParadox� explained

r ts

a cb

Prior entanglement: |ψ〉 = |000〉 � |011〉 � |101〉 � |110〉

Alice�s strategy:
1. if r = 1 then apply H to qubit
2. measure qubit and set a to result 
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Bob�s & Carol�s strategies: similar

Case 1 (rst = 000): state is measured directly � 
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��GHZGHZ Paradox� explainedParadox� explained

r ts

a cb

Prior entanglement: |ψ〉 = |000〉 � |011〉 � |101〉 � |110〉

Alice�s strategy:
1. if r = 1 then apply H to qubit
2. measure qubit and set a to result 
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Bob�s & Carol�s strategies: similar

Case 2 (rst = 011): new state  |001〉 + |010〉 � |100〉 + |111〉

Cases 3 & 4 (rst = 101 & 110): similar by symmetry
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GHZGHZ: conclusions: conclusions
� For the GHZ game, any classical team succeeds with  

probability at most ¾

� Allowing the players to communicate would enable them 
to succeed with probability 1

� Entanglement cannot be used to communicate

� Nevertheless, allowing the players to have entanglement 
enables them to succeed with probability 1

� Thus, entanglement is a useful resource for the task of 
winning the GHZ game
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Bell�s Inequality 
and its violation

part I
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Bell�s Inequality and its violationBell�s Inequality and its violation
Part I: physicist�s view:
Can a quantum state have pre-determined outcomes for 
each possible measurement that can be applied to it?

if {|0〉,|1〉} measurement 
then output 0

if {|+〉,|−〉} measurement
then output 1

if ... (etc)

qubit:

where the �manuscript� 
is something like this:

(called hidden variables)[Bell, 1964]
[Clauser, Horne, Shimony, Holt, 1969]
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Bell InequalityBell Inequality
Imagine a two-qubit system, where one of two measurements, 
called M0 and M1, will be applied to each qubit: 

M0 : a0

M1 : a1

M0 : b0

M1 : b1

Define:     A0
= (−1)a0  A1 =
(−1)a1 B0 =
(−1)b0   B1 =
(−1)b1

Claim: A0 B0 + A0 B1 + A1B0 − A1 B1 ≤ 2

Proof: A0 (B0 + B1) + A1 (B0 − B1) ≤ 2

one is ± 2 and the other is 0

space-like separated, so 
no cross-coordination
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Bell InequalityBell Inequality

Question: could one, in principle, design an experiment to 
check if this Bell Inequality holds for a particular system?

Answer 1: no, not directly, because A0, A1, B0, B1 cannot 
all be measured (only one As Bt term can be measured)

Answer 2: yes, indirectly, by making many runs of this 
experiment: pick a random st ∈ {00, 01, 10, 11} and then 
measure with Ms and Mt to get the value of  As Bt
The average of  A0 B0,  A0 B1,  A1B0,  −A1 B1 should be ≤ ½

A0 B0 + A0 B1 + A1B0 − A1 B1 ≤ 2  is called a Bell Inequality* 

* also called CHSH Inequality
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ViolatingViolating the Bell Inequalitythe Bell Inequality
Two-qubit system in state 

|φ〉 = |00〉 � |11〉

Define 
M0: rotate by  −π/16   then measure
M1: rotate by +3π/16  then measure

st = 01 or 10

π/8

3π/8

-π/8

st = 11

st = 00

Applying rotations θA and θB  yields:
cos(θA + θB ) (|00〉 � |11〉) + sin(θA + θB ) (|01〉 + |10〉)

A B = +1 A B = −1

Then A0 B0,  A0 B1,  A1B0,  −A1 B1 all have 
expected value ½√2, which contradicts
the upper bound of ½ cos2(π/8) = ½ + ¼√2 
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Bell Inequality violation: summary Bell Inequality violation: summary 
Assuming that quantum systems are 
governed by local hidden variables
leads to the Bell inequality 
A0 B0 + A0 B1 + A1B0 − A1 B1 ≤ 2 

But this is violated in the case of Bell states (by a factor of √2)

Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments 
along these lines have actually been conducted
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Bell�s Inequality 
and its violation

part II
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Bell�s Inequality and its violationBell�s Inequality and its violation

b

s t

a

input:

output:

With classical resources, Pr[a⊕ b = s∧ t] ≤ 0.75

But, with prior entanglement state |00〉 � |11〉,  
Pr[a⊕ b = s∧ t] = cos2(π/8) = ½ + ¼√2 = 0.853…

Rules: 1. No communication after inputs received
2. They win if a⊕ b = s∧ t

111
010
001
000

a⊕ bst

Part II: computer scientist�s view:
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The quantum strategyThe quantum strategy
� Alice and Bob start with entanglement

|φ〉 = |00〉 � |11〉

� Alice: if s = 0 then rotate by θA = −π/16 
else rotate by θA = + 3π/16 and measure 

� Bob: if t = 0 then rotate by θB = −π/16 
else rotate by θB = + 3π/16 and measure 

st = 01 or 10

π/8

3π/8

-π/8

st = 11

st = 00

cos(θA � θB ) (|00〉 � |11〉) + sin(θA � θB ) (|01〉 + |10〉)

Success probability: 
Pr[a⊕ b = s∧ t] = cos2(π/8) = ½ + ¼√2 = 0.853…
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NonlocalityNonlocality in operational termsin operational terms

information 
processing 

task

quantum 
entanglement

!

classically,
communication

is needed
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Magic square gameMagic square game

a33a32a31

a23a22a21

a13a12a11

Problem: fill in the matrix with bits such that each row has 
even parity and each column has odd parity

even

odd oddodd

even

evenIMPOSSIBLE

Game: ask Alice to fill in one row and Bob to fill in one column

They win iff parities are correct and bits agree at intersection

Success probabilities: classical and 1 quantum8/9
[Aravind, 2002] (details omitted here)
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preview of 
communication

complexity
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Classical Communication ComplexityClassical Communication Complexity

f (x,y)

x1x2 … xn y1y2 … yn

E.g. equality function: f (x,y) = 1 if x = y, and 0 if x ≠ y

Any deterministic protocol requires n bits communication

Probabilistic protocols can solve with only O(log(n/ε)) bits 
communication (error probability ε)

[Yao, 1979]
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Quantum Communication ComplexityQuantum Communication Complexity

Qubit communication 

Prior entanglement 

f (x,y)

x1x2 … xn y1y2 … yn

qubits

f (x,y)

x1x2 … xn y1y2 … yn

… …entangled qubits

bits
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