Introduction to Quantum Information Processing

Lecture 16

Richard Cleve

Overview of Lecture 16

- The GHZ "paradox"
- The Bell inequality and its violation:
- Physicist's perspective
- Computer Scientist's perspective
- The magic square game

preliminaries

Quantum information can apparently be used to substantially reduce computation costs for a number of interesting problems

How does quantum information affect the communication costs of information processing tasks?

We explore this issue ...

Entanglement and signaling

Entangled states, such as $\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$,

can be used to perform some intriguing feats, such as teleportation and superdense coding

But they cannot be used to "signal instantaneously"

Any operation performed on one system has no affect on the state of the other system (its reduced density matrix)

Basic communication scenario

Goal: convey n bits from Alice to Bob

Basic communication scenario

Bit communication：

Cost：n

Bit communication
\＆prior entanglement：

Cost： \boldsymbol{n}（can be deduced）

Qubit communication：

Cost： \boldsymbol{n}［Holevo＇s Theorem，1973］

Qubit communication
\＆prior entanglement：
日可白
日回回

Cost：$n / 2$ superdense coding
［Bennett \＆Wiesner，1992］

nonlocality a là GHZ

GHZ scenario

[Greenberger, Horne, Zeilinger, 1980]
Input: Output: $_{\overbrace{\text { Alice }}^{r}}^{r} a \leftarrow r$

Rules of the game:

1. It is promised that $r \oplus s \oplus t=0$
2. No communication after inputs received
3. They win if $a \oplus b \oplus c=r \vee s \vee t$

$r s t$	$a \oplus b \oplus c$	$a b c$
000	0Θ	011
011	1Θ	001
101	1Θ	111
110	1Θ	101

No perfect strategy for GHZ

Input: $\bigodot_{\text {Output: }}^{r}$

$r s t$	$a \oplus b \oplus c$
000	0
011	1
101	1
110	1

General deterministic strategy:

$$
a_{0}, a_{1}, b_{0}, b_{1}, c_{0}, c_{1}
$$

Winning conditions:
Has no solution, thus no perfect strategy exists

$$
\left\{\begin{array}{l}
a_{0} \oplus b_{0} \oplus c_{0}=0 \\
a_{0} \oplus b_{1} \oplus c_{1}=1 \\
a_{1} \oplus b_{0} \oplus c_{1}=1 \\
a_{1} \oplus b_{1} \oplus c_{0}=1
\end{array}\right.
$$

GHZ: preventing communication

Input and output events can be space-like separated: so signals at the speed of light are not fast enough for cheating What if Alice, Bob, and Carol still keep on winning?

"GHZ Paradox" explained

Prior entanglement: $|\psi\rangle=|000\rangle-|011\rangle-|101\rangle-|110\rangle$

Alice's strategy:

1. if $r=1$ then apply H to qubit
2. measure qubit and set a to result

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Bob's \& Carol's strategies: similar
Case $1(r s t=000)$: state is measured directly \ldots

"GHZ Paradox" explained

 Prior entanglement: $|\psi\rangle=|000\rangle-|011\rangle-|101\rangle-|110\rangle$

Alice's strategy:

1. if $r=1$ then apply H to qubit
2. measure qubit and set a to result

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Bob's \& Carol's strategies: similar
Case 2 (rst = 011): new state $|001\rangle+|010\rangle-|100\rangle+|111\rangle$
Cases 3 \& 4 (rst = 101 \& 110): similar by symmetry

GHZ: conclusions

- For the GHZ game, any classical team succeeds with probability at most $3 / 4$
- Allowing the players to communicate would enable them to succeed with probability 1
- Entanglement cannot be used to communicate
- Nevertheless, allowing the players to have entanglement enables them to succeed with probability 1
- Thus, entanglement is a useful resource for the task of winning the GHZ game

Bell's Inequality and its violation
 part

Bell's Inequality and its violation Part I: physicist's view:

Can a quantum state have pre-determined outcomes for each possible measurement that can be applied to it?

where the "manuscript" is something like this:
[Bell, 1964]
[Clauser, Horne, Shimony, Holt, 1969]

(called hidden variables)

Bell Inequality

Imagine a two-qubit system, where one of two measurements, called M_{0} and M_{1}, will be applied to each qubit:

Define: $\quad A_{0} \quad$ Claim: $A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1} \leq 2$
$=(-1)^{a_{0}} A_{1}=$
$(-1)^{a_{1}} B_{0}=$
Proof: $A_{0}\left(B_{0}+B_{1}\right)+A_{1}\left(B_{0}-B_{1}\right) \leq 2$
$(-1)^{b_{0}} B_{1}=$
$(-1)^{b_{1}}$
one is ± 2 and the other is 0

Bell Inequality

$A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1} \leq 2$ is called a Bell Inequality*
Question: could one, in principle, design an experiment to check if this Bell Inequality holds for a particular system?

Answer 1: no, not directly, because $A_{0}, A_{1}, B_{0}, B_{1}$ cannot all be measured (only one $A_{s} B_{t}$ term can be measured)

Answer 2: yes, indirectly, by making many runs of this experiment: pick a random $s t \in\{00,01,10,11\}$ and then measure with M_{s} and M_{t} to get the value of $A_{s} B_{t}$
The average of $A_{0} B_{0}, A_{0} B_{1}, A_{1} B_{0},-A_{1} B_{1}$ should be $\leq 1 / 2$

* also called CHSH Inequality

Violating the Bell Inequality

Two-qubit system in state

$$
|\phi\rangle=|00\rangle-|11\rangle
$$

Applying rotations θ_{A} and θ_{B} yields:

$$
\cos \left(\theta_{\mathrm{A}}+\theta_{\mathrm{B}}\right)(\underbrace{|00\rangle-|11\rangle}_{A B=+1})+\sin \left(\theta_{\mathrm{A}}+\theta_{\mathrm{B}}\right)(\underbrace{|01\rangle+|10\rangle}_{A B=-1})
$$

Define
M_{0} : rotate by $-\pi / 16$ then measure M_{1} : rotate by $+3 \pi / 16$ then measure

Then $A_{0} B_{0}, A_{0} B_{1}, A_{1} B_{0},-A_{1} B_{1}$ all have expected value $1 / 2 \sqrt{ } 2$, which contradicts the upper bound of $1 / 2$

Bell Inequality violation: summary

Assuming that quantum systems are governed by local hidden variables leads to the Bell inequality
 $A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1} \leq 2$

But this is violated in the case of Bell states (by a factor of $\sqrt{ } 2$)
Therefore, no such hidden variables exist
This is, in principle, experimentally verifiable, and experiments along these lines have actually been conducted

Bell's Inequality and its violation part ||

Bell's Inequality and its violation Part II: computer scientist's view:

 input:
output: a

Rules: 1. No communication after inputs received 2. They win if $a \oplus b=s \wedge t$

With classical resources, $\operatorname{Pr}[a \oplus b=s \wedge t] \leq 0.75$
But, with prior entanglement state $|00\rangle-|11\rangle$,

$s t$	$a \oplus b$
00	0
01	0
10	0
11	1

$\operatorname{Pr}[a \oplus b=s \wedge t]=\cos ^{2}(\pi / 8)=1 / 2+1 / 4 \sqrt{ } 2=0.853 \ldots$

The quantum strategy

- Alice and Bob start with entanglement
$|\phi\rangle=|00\rangle-|11\rangle$
- Alice: if $s=0$ then rotate by $\theta_{\mathrm{A}}=-\pi / 16$ else rotate by $\theta_{\mathrm{A}}=+3 \pi / 16$ and measure
- Bob: if $t=0$ then rotate by $\theta_{\mathrm{B}}=-\pi / 16$ else rotate by $\theta_{\mathrm{B}}=+3 \pi / 16$ and measure

$$
\cos \left(\theta_{A}-\theta_{B}\right)(|00\rangle-|11\rangle)+\sin \left(\theta_{A}-\theta_{B}\right)(|01\rangle+|10\rangle)
$$

Success probability:
$\operatorname{Pr}[a \oplus b=s \wedge t]=\cos ^{2}(\pi / 8)=1 / 2+1 / 4 \sqrt{ } 2=0.853 \ldots$

Nonlocality in operational terms

information
processing task

Magic square game

Problem: fill in the matrix with bits such that each row has even parity and each column has odd parity

Game: ask Alice to fill in one row and Bob to fill in one column
They win iff parities are correct and bits agree at intersection
Success probabilities: 8/9 classical and 1 quantum

$$
\begin{gathered}
\text { preview of } \\
\text { communication } \\
\text { complexity }
\end{gathered}
$$

Classical Communication Complexity

 [Yao, 1979]$$
\begin{array}{cc}
x_{1} x_{2} \ldots x_{n} \\
\sim & y_{1} y_{2} \ldots y_{n} \\
f(x, y)
\end{array}
$$

E.g. equality function: $f(x, y)=1$ if $x=y$, and 0 if $x \neq y$

Any deterministic protocol requires n bits communication Probabilistic protocols can solve with only $O(\log (n / \varepsilon))$ bits communication (error probability ε)

Quantum Communication Complexity

Qubit communication

Prior entanglement

