Introduction to Quantum Information Processing

Lecture 18

Richard Cleve

Overview of Lecture 18

- Continuation of fingerprinting
- Hidden matching problem
- Restricted-equality nonlocality
- Universal sets of gates

quantum fingerprints

Equality revisited

 in simultaneous message model$x_{1} x_{2} \ldots x_{n}$
$y_{1} y_{2} \ldots y_{n}$

$f(x, y)$
Equality function:

$$
f(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}
$$

Exact protocols: require $2 n$ bits communication

Equality revisited

 in simultaneous message model

Bounded-error protocols with a shared random key: require only $O(1)$ bits communication
Error-correcting code: $e(x)=101111010110011001$

$$
e(y)=011010010011001010
$$

Equality revisited

 in simultaneous message modelBounded-error protocols without a shared key:

Classical: $\theta\left(n^{1 / 2}\right)$
Quantum: $\theta(\log n)$

Quantum fingerprints

Question 1: how many orthogonal states in m qubits?
Answer: 2^{m}

Let ε be an arbitrarily small positive constant
Question 2: how many almost orthogonal* states in m qubits?
(* where $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq \varepsilon$)
Answer: $2^{2^{a m}}$, for some constant $a>0$

To be continued during next lecture ...

Quantum fingerprints

Question 1: how many orthogonal states in m qubits?
Answer: 2^{m}

Let ε be an arbitrarily small positive constant
Question 2: how many almost orthogonal* states in m qubits?
(* where $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq \varepsilon$)
Answer: $2^{2^{a m}}$, for some constant $a>0$
The states can be constructed via a suitable (classical) errorcorrecting code, which is a function $e:\{0,1\}^{n} \rightarrow\{0,1\}^{c n}$ where, for all $x \neq y, d c n \leq \Delta(e(x), e(y)) \leq(1-d) c n \quad(c, d$ are constants)

Construction of almost orthogonal states

Set $\left|\psi_{x}\right\rangle=\frac{1}{\sqrt{c n}} \sum_{k=1}^{c n}(-1)^{e(x)}|k\rangle$ for each $x \in\{0,1\}^{n} \quad(\log (c n)$ qubits)
Then $\left\langle\Psi_{x} \mid \psi_{y}\right\rangle=\frac{1}{c n} \sum_{k=1}^{c n}(-1)^{[e(x) \oplus e(y)]_{k}}|k\rangle=1-\frac{2 \Delta(e(x), e(y))}{c n}$
Since $d c n \leq \Delta(e(x), e(y)) \leq(1-d) c n$, we have $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq 1-2 d$

By duplicating each state, $\left|\psi_{x}\right\rangle \otimes\left|\psi_{x}\right\rangle \otimes \ldots \otimes\left|\psi_{x}\right\rangle$, the pairwise inner products can be made arbitrarily small: $(1-2 d)^{r} \leq \varepsilon$

Result: $m=r \log (c n)$ qubits storing $2^{n}=2^{(1 / c) 2^{m / r}}$ different states

Quantum fingerprints

Let $\left|\psi_{000}\right\rangle,\left|\psi_{001}\right\rangle, \ldots,\left|\psi_{111}\right\rangle$ be 2^{n} states on $O(\log n)$ qubits such that $\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq \varepsilon$ for all $x \neq y$

Given $\left|\psi_{x}\right\rangle\left|\Psi_{y}\right\rangle$, one can check if $x=y$ or $x \neq y$ as follows:

Intuition: $|0\rangle\left|\psi_{x}\right\rangle\left\langle\psi_{y}\right\rangle+|1\rangle\left|\psi_{y}\right\rangle\left|\psi_{x}\right\rangle$ if $x=y, \operatorname{Pr}[$ output $=0]=1$ if $x \neq y, \operatorname{Pr}[$ output $=0]=\left(1+\varepsilon^{2}\right) / 2$

Note: error probability can be reduced to $\left(\left(1+\varepsilon^{2}\right) / 2\right)^{r}$

Equality revisited

 in simultaneous message model

Bounded-error protocols without a shared key:

$f(x, y)$

Classical: $\theta\left(n^{1 / 2}\right)$
Quantum: $\theta(\log n)$

Quantum protocol for equality in simultaneous message model

Recall that, with a shared key, the problem is easy classically ...

... hidden matching problem

Hidden matching problem

For this problem, a quantum protocol is exponentially more efficient than any classical protocol-even with a shared key

Inputs: $\quad x \in\{0,1\}^{n}$

$M=$ matching on
$\{1,2, \ldots, n\}$

Only one-way communication (Alice to Bob) is permitted

The hidden matching problem

Inputs:

$$
x \in\{0,1\}^{n}
$$

Output: $\left(i, j, x_{i} \oplus x_{j}\right), \quad(i, j) \in M$

Classically, one-way communication is $\Omega(\sqrt{ } n)$, even with a shared classical key (the proof is omitted here)

Rough intuition: Alice doesn't know which edges are in M, so she would have to send $\Omega(\sqrt{ } n)$ bits of the form $x_{i} \oplus x_{j} \ldots$

The hidden matching problem

Inputs: $\quad x \in\{0,1\}^{n}$

$M=$ matching on $\{1,2, \ldots, n\}$

Output: $\left(i, j, x_{i} \oplus x_{j}\right), \quad(i, j) \in M$
Quantum protocol: Alice sends $\frac{1}{\sqrt{n}} \sum_{k=1}^{n}(-1)^{x_{k}}|k\rangle \quad$ ($\log n$ qubits)
Bob measures in $|i\rangle \pm|j\rangle$ basis, $(i, j) \in M$, and uses the outcome's relative phase to determine $x_{i} \oplus x_{j}$

nonlocality revisited

Restricted-equality nonlocality

inputs:

outputs:
(n bits)
(log n bits)

Precondition: either $x=y$ or $\Delta(x, y)=n / 2$
Required postcondition: $a=b$ iff $x=y$
With classical resources, $\Omega(n)$ bits of communication needed for an exact solution*

With $(|00\rangle+|11\rangle)^{\otimes \log n}$ prior entanglement, no communication is needed at all*
[BCT ‘99]

* Technical details similar to restricted equality of Lecture 17

Restricted－equality nonlocality

Bit communication：

Cost：$\theta(n)$

Bit communication
\＆prior entanglement：

cost：zero

Qubit communication：

Cost： $\log n$

Qubit communication
\＆prior entanglement：
日可白
日回易

cost：Zero

Nonlocality and communication complexity conclusions

- Quantum information affects communication complexity in interesting ways
- There is a rich interplay between quantum communication complexity and:
-quantum algorithms
-quantum information theory
-other notions of complexity theory ...

universality of two-qubit gates

A universal set of gates

Theorem: any unitary operation U acting on k qubits can be decomposed into $O\left(4^{k}\right)$ CNOT and one-qubit gates
(This was stated in Lecture 5 without a proof)
Proof sketch (for a slightly worse bound of $O\left(k^{2} 4^{k}\right)$) :
We first show how to simulate a controlled- U, for any onequbit unitary U

Fact: for any one-qubit unitary U, there exist A, B, C, and λ, such that:

- $A B C=I$
- $e^{i \lambda} A X B X C=U$, where $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

A universal set of gates

The aforementioned fact implies

Using such controlled- U gates, one can simulate controlled-controlled- V gates, for any unitary V, as follows:

where $V=U^{2}$

A universal set of gates

When $U=X$, this construction yields the 3-qubit Toffoli gate
From this gate, generalized Toffoli gates can be constructed:

A universal set of gates

From generalized Toffoli gates, generalized controlled- \boldsymbol{U} gates (controlled-controlled- ... $-U$) can be constructed:

A universal set of gates

The approach essentially enables any k-qubit operation of the simple form

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & U_{00} & 0 & 0 & U_{01} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & U_{10} & 0 & 0 & U_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

to be computed with $O\left(k^{2}\right)$ CNOT and one-qubit gates
Any $2^{k} \times 2^{k}$ unitary matrix can be decomposed into a product of $O\left(4^{k}\right)$ such simple matrices

A universal set of gates

This completes the proof sketch
Thus, the set of all one-qubit gates and the CNOT gate are universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal?
Answer 1: strictly speaking, no, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

