Introduction to Quantum Information Processing

Lecture 18

Richard Cleve

Overview of Lecture 18

- Continuation of fingerprinting
- Hidden matching problem
- Restricted-equality nonlocality
- Universal sets of gates

quantum fingerprints

Exact protocols: require 2*n* bits communication

Bounded-error protocols with a shared random key: require only O(1) bits communication

Error-correcting code: e(x) = 101111010110011001e(y) = 011010010011001001random k

Classical: $\theta(n^{1/2})$ Quantum: $\theta(\log n)$

Quantum fingerprints

Question 1: how many orthogonal states in m qubits? **Answer:** 2^m

Let ε be an arbitrarily small positive constant **Question 2:** how many *almost orthogonal** states in *m* qubits? (* where $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$)

Answer: $2^{2^{am}}$, for some constant a > 0

To be continued during next lecture ...

Quantum fingerprints

Question 1: how many orthogonal states in m qubits? **Answer:** 2^m

Let ε be an arbitrarily small positive constant **Question 2:** how many *almost orthogonal** states in *m* qubits? (* where $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$)

Answer: $2^{2^{am}}$, for some constant a > 0

The states can be constructed via a suitable (classical) errorcorrecting code, which is a function $e: \{0,1\}^n \rightarrow \{0,1\}^{cn}$ where, for all $x \neq y$, $dcn \leq \Delta(e(x), e(y)) \leq (1-d)cn$ (c, d are constants)

Construction of *almost* orthogonal states

Set $|\Psi_x\rangle = \frac{1}{\sqrt{cn}} \sum_{k=1}^{cn} (-1)^{e(x)_k} |k\rangle$ for each $x \in \{0,1\}^n$ (log(*cn*) qubits)

Then $\langle \Psi_{x} | \Psi_{y} \rangle = \frac{1}{cn} \sum_{k=1}^{cn} (-1)^{[e(x) \oplus e(y)]_{k}} | k \rangle = 1 - \frac{2\Delta(e(x), e(y))}{cn}$

Since $dcn \le \Delta(e(x), e(y)) \le (1-d)cn$, we have $|\langle \psi_x | \psi_y \rangle| \le 1-2d$

By duplicating each state, $|\psi_x\rangle \otimes |\psi_x\rangle \otimes \dots \otimes |\psi_x\rangle$, the pairwise inner products can be made arbitrarily small: $(1-2d)^r \le \varepsilon$

Result: $m = r \log(cn)$ qubits storing $2^n = 2^{(1/c)2^{m/r}}$ different states

Quantum fingerprints

Let $|\psi_{000}\rangle$, $|\psi_{001}\rangle$, ..., $|\psi_{111}\rangle$ be 2^n states on $O(\log n)$ qubits such that $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$ for all $x \ne y$

Given $|\psi_x\rangle|\psi_y\rangle$, one can check if x = y or $x \neq y$ as follows:

if x = y, Pr[output = 0] = 1 if $x \neq y$, Pr[output = 0] = $(1 + \varepsilon^2)/2$

Note: error probability can be reduced to $((1 + \varepsilon^2)/2)^r$

Classical: $\theta(n^{1/2})$

Quantum: $\theta(\log n)$

[A '96] [NS '96] [BCWW '01]

Quantum protocol for equality in simultaneous message model

In the second second

Hidden matching problem

For this problem, a quantum protocol is exponentially more efficient than any classical protocol—even with a shared key

Only one-way communication (Alice to Bob) is permitted

[Bar-Yossef, Jayram, Kerenidis, 2004]

Classically, one-way communication is $\Omega(\sqrt{n})$, even with a shared classical key (the proof is omitted here)

Rough intuition: Alice doesn't know which edges are in M, so she would have to send $\Omega(\sqrt{n})$ bits of the form $x_i \bigoplus x_j \dots$

The hidden matching problem

Inputs: $x \in \{0,1\}^n$

Output: $(i, j, x_i \oplus x_j), (i, j) \in M$

Quantum protocol: Alice sends $\frac{1}{\sqrt{n}}\sum_{k=1}^{n}(-1)^{x_k}|k\rangle$ (log *n* qubits)

Bob measures in $|i\rangle \pm |j\rangle$ basis, $(i, j) \in M$, and uses the outcome's relative phase to determine $x_i \bigoplus x_j$

nonlocality revisited

Restricted-equality nonlocality

Precondition: either x = y or $\Delta(x,y) = n/2$

Required postcondition: a = b iff x = y

With classical resources, $\Omega(n)$ bits of communication needed for an exact solution*

With $(|00\rangle + |11\rangle)^{\otimes \log n}$ prior entanglement, no communication is needed at all*

* Technical details similar to restricted equality of Lecture 17
[BCT '99]

Restricted-equality nonlocality

Bit communication:

Cost: $\theta(n)$

Cost: Zero

Qubit communication:

Cost: $\log n$

Qubit communication & prior entanglement:

Cost: Zero

Nonlocality and communication complexity conclusions

- Quantum information affects communication complexity in interesting ways
- There is a rich interplay between quantum communication complexity and:
 - -quantum algorithms
 - -quantum information theory
 - -other notions of complexity theory ...

universality of two-qubit gates

Theorem: any unitary operation U acting on k qubits can be decomposed into $O(4^k)$ CNOT and one-qubit gates

(This was stated in Lecture 5 without a proof)

Proof sketch (for a slightly worse bound of $O(k^2 4^k)$) : We first show how to simulate a controlled-U, for any onequbit unitary U

Fact: for any one-qubit unitary U, there exist A, B, C, and λ , such that:

- A B C = I
- $e^{i\lambda} A X B X C = U$, where $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

The aforementioned fact implies

Using such controlled-U gates, one can simulate controlledcontrolled-V gates, for any unitary V, as follows:

When U = X, this construction yields the 3-qubit **Toffoli gate**

From this gate, *generalized* Toffoli gates can be constructed:

From generalized Toffoli gates, *generalized controlled-U* gates (controlled-controlled- ... -U) can be constructed:

(1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0		1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	${U}_{00}$	${U}_{01}$
$\left(0\right)$	0	0	0	0	0	${U}_{10}$	U_{11}

The approach essentially enables any k-qubit operation of the simple form

(1)	0	0	0	0	0	0	0
0	${U}_{00}$	0	0	${U}_{01}$	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	${U}_{10}$	0	0	U_{11}	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1)

to be computed with $O(k^2)$ CNOT and one-qubit gates

Any $2^k \times 2^k$ unitary matrix can be decomposed into a product of $O(4^k)$ such simple matrices

This completes the proof sketch

Thus, the set of *all* one-qubit gates and the CNOT gate are *universal* in that they can simulate any other gate set

Question: is there a *finite* set of gates that is universal?

Answer 1: strictly speaking, *no*, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

