
1

Introduction to Quantum Introduction to Quantum 
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Lecture 18

Richard Cleve
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Overview of Lecture 18Overview of Lecture 18
� Continuation of fingerprinting
� Hidden matching problem
� Restricted-equality nonlocality
� Universal sets of gates
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Quantum fingerprintsQuantum fingerprints
Question 1: how many orthogonal states in m qubits?
Answer: 2m

Answer: 22am, for some constant a > 0

Let ε be an arbitrarily small positive constant
Question 2: how many almost orthogonal* states in m qubits? 
(* where |〈ψx|ψy〉| ≤ ε )

The states can be constructed via a suitable (classical) error-
correcting code, which is a function  e :{0,1}n ! {0,1}cn where, 
for all x ≠ y, dcn ≤ ∆(e(x),e(y)) ≤ (1−d )cn (c, d are constants)
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Construction of Construction of almostalmost
orthogonal statesorthogonal states

Since dcn ≤ ∆(e(x),e(y)) ≤ (1−d)cn,  we have |〈ψx|ψy〉| ≤ 1−2d

Set  |ψx〉 for each x∈ {0,1}n    (log(cn) qubits) ∑
=
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cn
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11 )()(

Then 〈ψx|ψy〉
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By duplicating each state, |ψx〉⊗|ψ x〉⊗ � ⊗|ψ x〉, the pairwise
inner products can be made arbitrarily small:  (1−2d )r ≤ ε

Result: m = r log(cn) qubits storing 2n = 2(1/c)2m/r different states
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Quantum fingerprintsQuantum fingerprints

if x = y, Pr[output = 0] = 1
if x ≠ y, Pr[output = 0] = (1+ ε2)/2

Given |ψx〉|ψy〉, one can check if x = y or x ≠ y as follows:

Let |ψ000〉, |ψ001〉, �, |ψ111〉 be 2n states on O(log n) qubits such 
that |〈ψx|ψy〉| ≤ ε for all x ≠ y

H
S
W
A
P

H
|ψx〉

|ψy〉

|0〉

Intuition: |0〉|ψx〉|ψy〉 + |1〉|ψy〉|ψx〉
Note: error probability can 
be reduced to ((1+ ε2)/2)r
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Equality revisitedEquality revisited
in simultaneous message modelin simultaneous message model
x1x2 … xn y1y2 … yn

f (x,y)
Bounded-error 
protocols without
a shared key:

Classical: θ(n1/2)
Quantum: θ(log n)
[A �96] [NS �96] [BCWW �01]
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Quantum protocol for equality       Quantum protocol for equality       
in simultaneous message modelin simultaneous message model

x1x2 … xn y1y2 … yn

|ψx〉 |ψy〉

Orthogonality
test

|ψx〉 |ψy〉
Recall that, with a 
shared key, the 
problem is easy 
classically ...
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...hidden 
matching 
problem
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Hidden matching problemHidden matching problem
For this problem, a quantum protocol is exponentially more 
efficient than any classical protocol�even with a shared key

x ∈ {0,1}n matching on 
{1, 2, �, n}Inputs: M =

[Bar-Yossef, Jayram, Kerenidis, 2004]

(i, j, xi⊕ xj), such that 
(i, j) ∈ M

Output:

Only one-way communication (Alice to Bob) is permitted
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The hidden matching problemThe hidden matching problem
x ∈ {0,1}n matching on 

{1,2, �, n}Inputs:

Output: (i, j, xi⊕ xj),  (i, j) ∈ M

M =

Rough intuition: Alice doesn�t know which edges are in M, 
so she would have to send Ω(√n) bits of the form xi⊕ xj �

Classically, one-way communication is Ω(√n), even with a 
shared classical key (the proof is omitted here)
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The hidden matching problemThe hidden matching problem
x ∈ {0,1}n matching on 

{1,2, �, n}Inputs: M =

Output: (i, j, xi⊕ xj),  (i, j) ∈ M

Quantum protocol: Alice sends                          (log n qubits)∑
=

−
n

k
kkx

n 1
11 )(

Bob measures in |i〉 ± |j〉 basis, (i, j) ∈ M, 
and uses the outcome�s relative phase to 
determine xi⊕ xj
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nonlocality
revisited
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RestrictedRestricted--equality equality nonlocalitynonlocality

b

x y

a

inputs:

outputs:

(n bits)

(log n bits)

(n bits)

(log n bits)

With classical resources, Ω(n) bits of communication needed 
for an exact solution*

With  (|00〉 + |11〉)⊗ log n prior entanglement, no communication 
is needed at all*

Precondition: either x = y or ∆(x,y) = n/2

Required postcondition: a = b iff x = y

[BCT �99]
∗ Technical details similar to restricted equality of Lecture 17
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RestrictedRestricted--equality equality nonlocalitynonlocality
Bit communication:

Cost: θ(n)

Qubit communication:

Cost: log n

Bit communication    
& prior entanglement:

Cost: zero Cost: zero

Qubit communication 
& prior entanglement:
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NonlocalityNonlocality and communication and communication 
complexity conclusionscomplexity conclusions

� Quantum information affects communication 
complexity in interesting ways

� There is a rich interplay between quantum 
communication complexity and:
� quantum algorithms
� quantum information theory
� other notions of complexity theory �
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universality of 
two-qubit gates
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A universal set of gatesA universal set of gates
Theorem: any unitary operation U acting on k qubits can be 
decomposed into O(4k) CNOT and one-qubit gates

(This was stated in Lecture 5 without a proof)

Proof sketch (for a slightly worse bound of O(k24k)) :
We first show how to simulate a controlled-U, for any one-
qubit unitary U

� A B C = I
� eiλ A X B X C = U, where

Fact: for any one-qubit unitary U, there exist  A, B, C,
and λ, such that:
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A universal set of gatesA universal set of gates
The aforementioned fact implies

U A B C

P
where 







=
λ0

01
ie

P≡

Using such controlled-U gates, one can simulate controlled-
controlled-V gates, for any unitary V, as follows:

UV U U�

≡ where V = U 2
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A universal set of gatesA universal set of gates
When U = X, this construction yields the 3-qubit Toffoli gate

From this gate, generalized Toffoli gates can be constructed:

≡
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A universal set of gatesA universal set of gates
From generalized Toffoli gates, generalized controlled-U
gates (controlled-controlled- ... -U) can be constructed:

U
|0〉

U

≡
|0〉
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A universal set of gatesA universal set of gates
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The approach essentially enables any k-qubit operation of 
the simple form

to be computed with O(k2) CNOT and one-qubit gates

Any 2k×2k unitary matrix can be decomposed into a product 
of O(4k) such simple matrices
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A universal set of gatesA universal set of gates

Thus, the set of all one-qubit gates and the CNOT gate are 
universal in that they can simulate any other gate set

This completes the proof sketch

Question: is there a finite set of gates that is universal? 

Answer 1: strictly speaking, no, because this results in only 
countably many quantum circuits, whereas there are 
uncountably many unitary operations on k qubits (for any k)
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