Introduction to Quantum Information Processing

Lecture 19

Richard Cleve

Overview of Lecture 19

- Approximately universal sets of gates
- More on complexity classes
- NP: definitions and examples of problems therein
- FACTORING versus NP and co-NP
- quantum speed-up for NP-complete problems
- Optimality of Grover's search algorithm

approximately universal sets of gates

A universal set of gates

Theorem: any unitary operation U acting on k qubits can be decomposed into $O\left(4^{k}\right)$ CNOT and one-qubit gates

Thus, the set of all one-qubit gates and the CNOT gate are universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal?
Answer 1: strictly speaking, no, because this results in only countably many quantum circuits, whereas there are uncountably many unitary operations on k qubits (for any k)

Approximately universal gate sets

Answer 2: yes, for universality in an approximate sense
As an illustrative example, any rotation can be approximated within any precision by repeatedly applying
$R=\left(\begin{array}{cc}\cos (\sqrt{2} \pi) & -\sin (\sqrt{2} \pi) \\ \sin (\sqrt{2} \pi) & \cos (\sqrt{2} \pi)\end{array}\right)$
some number of times
In this sense, R is approximately universal for the set of all one-qubit rotations: any rotation S can be approximated within precision ε by applying R a suitable number of times It turns out that $O\left((1 / \varepsilon)^{c}\right)$ times suffices (for a constant c)

Approximately universal gate sets

Theorem: the gates CNOT, H, and $S=\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right)$
are approximately universal, in the sense that any unitary operation on k qubits can be simulated within precision ε by applying $O\left(4^{k} \log ^{c}(1 / \varepsilon)\right)$ of them (c is a constant)

more on complexity classes

Complexity classes

Recall from Lecture 6:

- P (polynomial time): problems solved by $O\left(n^{c}\right)$-size classical circuits (decision problems and uniform circuit families)
- BPP (bounded error probabilistic polynomial time): problems solved by $O\left(n^{c}\right)$-size probabilistic circuits that err with probability $\leq 1 / 4$
- BQP (bounded error quantum polynomial time): problems solved by $O\left(n^{c}\right)$-size probabilistic circuits that err with probability $\leq 1 / 4$
- PSPACE (polynomial space): problems solved by algorithms that use $O\left(n^{c}\right)$ memory.

Summary of previous containments

$P \subseteq B P P \subseteq B Q P \subseteq P S P A C E \subseteq E X P$

We now consider further structure between \mathbf{P} and PSPACE

Technically, we will restrict our attention to languages (essentially $\{0,1\}$-problems)

Many problems of interest can be cast in terms of languages

For example, FACTORING $=\{(x, y): \exists 2 \leq z \leq y$, such that z divides $x\}$

NP

Define NP (non-deterministic polynomial time) as the class of languages whose positive instances have "witnesses" that can be verified in polynomial time

Example: Let 3-CNF-SAT be the language consisting of all 3-CNF formulas that are satisfiable

3-CNF formula:

$f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{5}\right) \wedge \cdots \wedge\left(\bar{x}_{1} \vee x_{5} \vee \bar{x}_{n}\right)$
$f\left(x_{1}, \ldots, x_{n}\right)$ is satisfiable iff there exists $b_{1}, \ldots, b_{n} \in\{0,1\}$ such that $f\left(b_{1}, \ldots, b_{n}\right)=1$

No sub-exponential-time algorithm is known for 3-CNF-SAT
But poly-time verifiable witnesses exist (namely, b_{1}, \ldots, b_{n})

Other "logic" problems in NP

- k-DNF-SAT:
$f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \wedge \bar{x}_{3} \wedge x_{4}\right) \vee\left(\bar{x}_{2} \wedge x_{3} \wedge \bar{x}_{5}\right) \vee \cdots \vee\left(\bar{x}_{1} \wedge x_{5} \wedge \bar{x}_{n}\right)$
* But, unlike with k-CNF-SAT, this one is known to be in \mathbf{P}
- CIRCUIT-SAT:

"Graph theory" problems in NP

- k-COLOR: does G have a k-coloring?
- k-CLIQUE: does G have a clique of size k ?
- HAM-PATH: does G have a Hamiltonian path?
- EUL-PATH: does G have an Eulerian path?

"Arithmetic" problems in NP

- $\operatorname{FACTORING}=\{(x, y): \exists 2 \leq z \leq y$, such that z divides $x\}$
- SUBSET-SUM: given integers $x_{1}, x_{2}, \ldots, x_{n}, y$, do there exist $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n\}$ such that $x_{i 1}+x_{i 2}+\ldots+x_{i k}=y$?
- INTEGER-LINEAR-PROGRAMMING: linear programming where one seeks an integer-valued solution (its existence)

P vs. NP

All of the aforementioned problems have the property that they reduce to 3-CNF-SAT, in the sense that a polynomialtime algorithm for 3-CNF-SAT can be converted into a polytime algorithm for the problem

Example:

 algorithm for 3-COLOR> algorithm for
> 3-CNF-SAT

If a polynomial-time algorithm is discovered for 3-CNF-SAT then there is a polynomial-time algorithm for 3-COLOR
In fact, this holds for any problem $\mathbf{X} \in$ NP, hence 3-CNF-SAT is NP-hard ... and so are CIRCUIT-SAT, k-COLOR, ...

FACTORING vs. NP

Is FACTORING NP-hard too?
If so, then every problem in NP is solvable by a poly-time quantum algorithm!

But FACTORING has not been shown to be NP-hard

Moreover, there is "evidence" that it is not NP-hard: FACTORING \in NP $\cap c o-N P$

If FACTORING is NP-hard then NP = co-NP

FACTORING vs. co-NP

FACTORING $=\{(x, y): \exists 2 \leq z \leq y$, s.t. z divides $x\}$
co-NP: languages whose negative instances have "witnesses" that can be verified in poly-time

Question: what is a good witness for the negative instances?

Answer: the prime factorization $p_{1}, p_{2}, \ldots, p_{m}$ of x will work

Can verify primality and compare $p_{1}, p_{2}, \ldots, p_{m}$ with y, all in poly-time

Quantum speed-up for NP-complete problems

Can use Grover's quantum search algorithm to find a witness quadratically faster than with known classical algorithms

Example: for CIRCUIT-SAT, best classical algorithm is to search for a satisfying assignment, taking time $O\left(n^{c} 2^{n}\right)$

Quantum algorithm takes time $O\left(n^{c} 2^{n / 2}\right)$

optimality of Grover's search algorithm

Optimality of Grover's algorithm

Theorem: any quantum search algorithm for $f:\{0,1\}^{n} \rightarrow\{0,1\}$ must make $\Omega\left(\sqrt{ } 2^{n}\right)$ queries to f

Proof (of a slightly simplified version):

Assume queries are of the form

$$
|x\rangle \equiv f \equiv(-1)^{f(x)}|x\rangle
$$

and that a k-query algorithm is of the form

where $U_{0}, U_{1}, U_{2}, \ldots, U_{k}$, are any unitary operations

Optimality of Grover's algorithm

Define $f_{r}:\{0,1\}^{n} \rightarrow\{0,1\}$ as $f_{r}(x)=1$ iff $x=r$
Consider

versus

We'll show that, averaging over all $r \in\{0,1\}^{n}$,

$$
\|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle \| \leq 2 k / \sqrt{2^{n}}
$$

Optimality of Grover's algorithm

Consider

Note that
$\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle=\left(\left|\psi_{r, k}\right\rangle-\left|\psi_{r, k-1}\right\rangle\right)+\left(\left|\psi_{r, k-1}\right\rangle-\left|\psi_{r, k-2}\right\rangle\right)+\ldots+\left(\left|\psi_{r, 1}\right\rangle-\left|\psi_{r, 0}\right\rangle\right)$
which implies

$$
\|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle\|\leq\|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, k-1}\right\rangle\|+\ldots+\|\left|\psi_{r, 1}\right\rangle-\left|\psi_{r, 0}\right\rangle \|
$$

Optimality of Grover's algorithm

 ${ }^{10}=U_{0}=I=U_{1}=I=U_{2}=f_{r}^{\text {quer } i}=U_{3}=U_{k}=\mid \psi_{r, i}$ $|0\rangle=\underbrace{U_{0}}_{U_{0}} I=\underbrace{U_{1}}_{\sum_{x} a_{i, x}^{4}|x\rangle}=\frac{U_{2}}{U_{2}} I=U_{3}^{\text {auery } i+1} f_{r}^{i+1}=U_{k} \equiv\left|\psi_{r, i-1}\right\rangle$$\|\left|\psi_{r, i}\right\rangle-\left|\psi_{r, i-1}\right\rangle \|=\left|2 \alpha_{i, r}\right|$, since query only negates $|r\rangle$
Therefore, $\|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle \| \leq \sum_{i=0}^{k-1} 2\left|\alpha_{i, r}\right|$

Optimality of Grover's algorithm

Now, averaging over all $r \in\{0,1\}^{n}$,

$$
\begin{aligned}
\left.\frac{1}{2^{n}} \sum_{r} \|\left|\psi_{r, k}\right\rangle-\left|\psi_{r, 0}\right\rangle \right\rvert\, & \leq \frac{1}{2^{n}} \sum_{r}\left(\sum_{i=0}^{k-1} 2\left|\alpha_{i, r}\right|\right) \\
& =\frac{1}{2^{n}} \sum_{i=0}^{k-1} 2\left(\sum_{r}\left|\alpha_{i, r}\right|\right) \\
& \leq \frac{1}{2^{n}} \sum_{i=0}^{k-1} 2\left(\sqrt{2^{n}}\right) \quad \text { (By Cauchy-Schwarz) } \\
& =\frac{2 k}{\sqrt{2^{n}}}
\end{aligned}
$$

Therefore, for some $r \in\{0,1\}^{n}$, the number of queries k must be $\Omega\left(\sqrt{ } 2^{n}\right)$, in order to distinguish f_{r} from the all-zero function This completes the proof

