Introduction to Quantum Information Processing

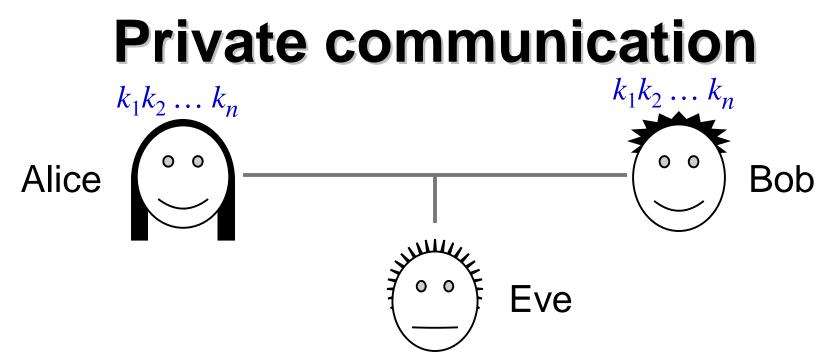
Lecture 20

Richard Cleve

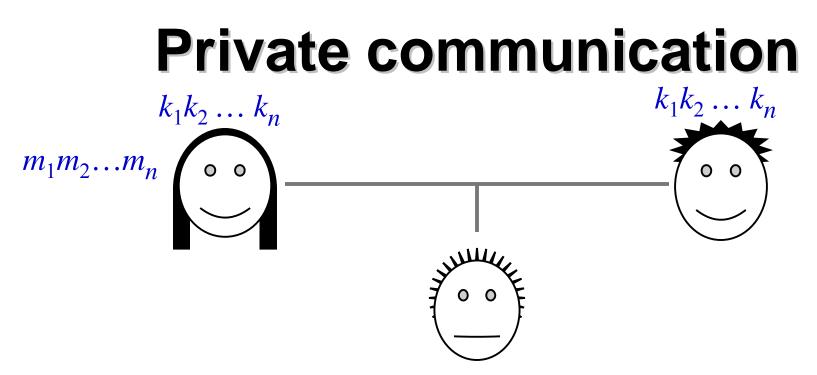
Overview of Lecture 20

- Cryptography: the key distribution problem
- The BB84 quantum key distribution protocol
- The bit commitment problem

quantum key distribution



- Suppose Alice and Bob would like to communicate privately in the presence of an eavesdropper Eve
- A provably secure (classical) scheme exists for this, called the *one-time pad*
- The one-time pad requires Alice & Bob to share a secret
 key: k ∈ {0,1}ⁿ, uniformly distributed (secret from Eve)



One-time pad protocol:

- Alice sends $c = m \oplus k$ to Bob
- Bob receives computes $c \oplus k$, which is $(m \oplus k) \oplus k = m$

This is secure because, what Eve sees is c, and c is uniformly distributed, regardless of what m is

Key distribution scenario

- For security, Alice and Bob must never reuse the key bits
 - E.g., if Alice encrypts both m and m' using the same key k then Eve can deduce $m \oplus m' = c \oplus c'$
- Problem: how do they distribute the secret key bits in the first place?
 - Presumably, there is some trusted preprocessing stage where this is set up (say, where Alice and Bob get together, or where they use a trusted third party)
- Key distribution problem: set up a large number of secret key bits

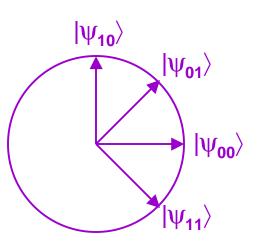
Key distribution based on computational hardness

- The **RSA** protocol can be used for key distribution:
 - Alice chooses a random key, encrypts it using Bob's *public key*, and sends it to Bob
 - Bob decrypts Alice's message using his secret (private) key
- The security of **RSA** is based on the presumed computational difficulty of factoring integers
- More abstractly, a key distribution protocol can be based on any *trapdoor one-way function*
- Most such schemes are breakable by quantum computers

Quantum key distribution (QKD)

- A protocol that enables Alice and Bob to set up a secure* secret key, provided that they have:
 - A *quantum channel*, where Eve can read and modify messages
 - An *authenticated classical channel*, where Eve can read messages, but cannot tamper with them (the authenticated classical channel can be simulated by Alice and Bob having a *very short* classical secret key)
- There are several protocols for QKD, and the first one proposed is called "BB84" [Bennett & Brassard, 1984]:
 - BB84 is "easy to implement" physically, but "difficult" to prove secure
 - [Mayers, 1996]: first true security proof (quite complicated)
 - [Shor & Preskill, 2000]: "simple" proof of security
- * Information-theoretic security

• First, define: $|\Psi_{00}\rangle = |0\rangle$ $|\Psi_{10}\rangle = |1\rangle$ $|\Psi_{11}\rangle = |-\rangle = |0\rangle - |1\rangle$ $|\Psi_{01}\rangle = |+\rangle = |0\rangle + |1\rangle$



- Alice begins with two random *n*-bit strings $a, b \in \{0,1\}^n$
- Alice sends the state $|\psi\rangle = |\psi_{a_1b_1}\rangle |\psi_{a_2b_2}\rangle \dots |\psi_{a_nb_n}\rangle$ to Bob
- **Note:** Eve may see these qubits (and tamper wth them)
- After receiving |ψ⟩, Bob randomly chooses b' ∈ {0,1}ⁿ and measures each qubit as follows:
 - If $b'_i = 0$ then measure qubit in basis $\{|0\rangle, |1\rangle\}$, yielding outcome a'_i
 - If $b'_i = 1$ then measure qubit in basis $\{|+\rangle, |-\rangle\}$, yielding outcome a'_i

• Note:

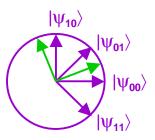
- If $b'_i = b_i$ then $a'_i = a_i$
- If $b'_i \neq b_i$ then $\Pr[a'_i = a_i] = \frac{1}{2}$
- Bob informs Alice when he has performed his measurements (using the public channel)
- Next, Alice reveals b and Bob reveals b' over the public channel
- They discard the cases where b'_i≠b_i and they will use the remaining bits of a and a' to produce the key
- Note:
 - If Eve did not disturb the qubits then the key can be just a (= a')
 - The *interesting* case is where Eve may tamper with $|\psi\rangle$ while it is sent from Alice to Bob

 $|\psi_{10}\rangle$

 $|\psi_{01}\rangle$

 $|\psi_{11}\rangle$

 $|\psi_{00}\rangle$



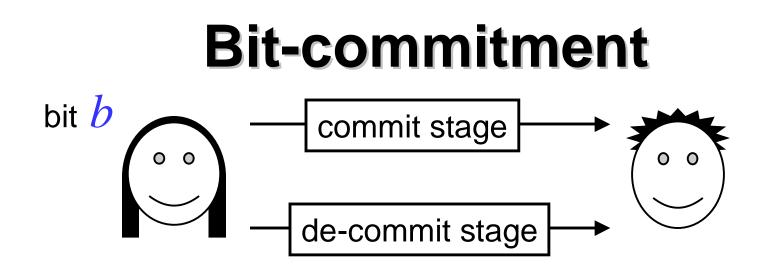
• Intuition:

- Eve cannot acquire information about $|\psi\rangle$ without disturbing it, which will cause **some** of the bits of *a* and *a'* to disagree
- It can be proven* that: the more information Eve acquires about *a*,
 the more bit positions of *a* and *a*' will be different
- From Alice and Bob's remaining bits, a and a' (where the positions where $b'_i \neq b_i$ have already been discarded):
 - They take a random subset and reveal them in order to estimate the fraction of bits where a and a' disagree
 - If this fraction is not too high then they proceed to distill a key from the bits of a and a' that are left over (around n/4 bits)

* To prove this rigorously is nontrivial

- If the error rate between a and a' is below some threshold (around 11%) then Alice and Bob can produce a good key using techniques from classical cryptography:
 - Information reconciliation ("distributed error correction"): to produce shorter a and a' such that (i) a = a', and (ii) Eve doesn't acquire much information about a and a' in the process
 - **Privacy amplification:** to produce shorter a and a' such that Eve's information about a and a' is very small
- There are already commercially available implementations of BB84, though assessing their true security is a subtle matter (since their physical mechanisms are not ideal)

the story of bit-commitment



- Alice has a bit *b* that she wants to *commit* to Bob:
- After the *commit* stage, Bob should know nothing about *b*, but Alice should not be able to change her mind
- After the *de-commit* stage, either:
 - Bob should learn b and accept its value, or
 - Bob should reject Alice's de-commitment messages, if she deviates from the protocol

Simple physical implementation

- **Commit:** Alice writes *b* down on a piece of paper, locks it in a safe, sends the safe to Bob, but keeps the key
- **De-commit:** Alice sends the key to Bob, who then opens the safe
- Desireable properties:
 - Binding: Alice cannot change b after commit
 - Concealing: Bob learns nothing about b until de-commit

Question: why should anyone care about bit-commitment?

Answer: it is a useful primitive operation for other protocols, such as zero-knowledge proofs of language-membership

Complexity-theoretic implementation

Based on a *one-way function* $f: \{0,1\}^n \rightarrow \{0,1\}^n$ and a *hard-predicate* $h: \{0,1\}^n \rightarrow \{0,1\}$ for f

Commit: Alice picks a random $x \in \{0,1\}^n$, sets y = f(x) and $c = b \oplus h(x)$ and then sends y and c to Bob

De-commit: Alice sends *x* to Bob, who verifies that y = f(x) and then sets $b = c \oplus h(x)$

This is (i) perfectly binding and (ii) computationally concealing, based on the hardness of predicate h

Quantum implementation

- Inspired by the success of QKD, one can try to use the properties of quantum mechanical systems to design an information-theoretically secure bit-commitment scheme
- One simple idea:
 - To **commit** to **0**, Alice sends a random sequence from $\{|0\rangle, |1\rangle\}$
 - To **commit** to **1**, Alice sends a random sequence from $\{|+\rangle, |-\rangle\}$
 - Bob measures each qubit received in a random basis
 - To de-commit, Alice tells Bob exactly which states she sent in the commitment stage (by sending its index 00, 01, 10, or 11), and Bob checks for consistency with his measurement results
- A paper appeared in 1993 proposing a quantum bitcommitment scheme and a proof of security

Quantum implementation

- Not only was the 1993 scheme shown to be insecure, but it was later shown that no such scheme can exist
- To understand the impossibility proof, recall the Schmidt decomposition:

Let
$$|\psi\rangle$$
 be *any* bipartite quantum state:
 $|\psi\rangle = \sum_{x \in X \ y \in Y} \alpha_{x,y} |x\rangle |y\rangle$
Then there exist orthonormal states
 $|\mu_1\rangle, |\mu_2\rangle, ..., |\mu_m\rangle$ and $|\phi_1\rangle, |\phi_2\rangle, ..., |\phi_m\rangle$ such that
 $|\psi\rangle = \sum_{z \in Z} \beta_z |\mu_z\rangle |\phi_z\rangle$

[Mayers '96][Lo & Chau '96] Eigenvectors of $Tr_1 |\psi\rangle \langle \psi |$

Quantum implementation

- **Corollary:** if $|\psi_0\rangle$, $|\psi_1\rangle$ are such that $\mathrm{Tr}_1 |\psi_0\rangle \langle \psi_0| = \mathrm{Tr}_1 |\psi_1\rangle \langle \psi_1|$ then there exists a unitary U (acting on the first register) such that $(U \otimes I) |\psi_0\rangle = |\psi_1\rangle$
- Proof:

$$|\Psi_{0}\rangle = \sum_{z \in Z} \beta_{z} |\mu_{z}\rangle |\phi_{z}\rangle \quad \text{and} \quad |\Psi_{1}\rangle = \sum_{z \in Z} \beta_{z} |\mu'_{z}\rangle |\phi_{z}\rangle$$

Let $U|\mu_{z}\rangle = |\mu'_{z}\rangle$

- Protocol can be "purified" so that Alice's commit states are $|\psi_0\rangle \& |\psi_1\rangle$ (where she sends the second register to Bob)
- By applying U to her register, Alice can change her commitment from b = 0 to b = 1 (by changing $|\psi_0\rangle$ to $|\psi_1\rangle$)

