
The Stable Marriage Problem, and The Coupon
Collector’s Problem

497 - Randomized Algorithms

Sariel Har-Peled

September 17, 2002

1 The Stable Marriage Problem

You haven males andn females. Every male has a ranked list of females he likes, and vice versa.
Thus, an instance of his problem might be

A : abcd B: bacd C: adcb D: dcab
a : ABCD b: DCBA c: ABCD d: CDAB,

where capital letters represent females, and small letters represent males. Consider a marriage
M = {A−a,B−b,C−c,D−d}. Note thatC−d is a dissatisfied couple, asC prefer to ditchc and
marry d, andd would prefer to ditchD and marryC. Thus, this marriage setting is unstable, as
C−d would just elope together.

Question 1.1 Given an full preferences lists, is there a stable marriage?

TheProposal Algorithmworks by a man proposing to a woman according to his preference list.
A woman either decline, because she is already married to somebody she prefers, or she dispose
of her current mate and accept the proposal.

It is easy to argue that the PA terminates in a stable marriage. Indeed, once a woman get married
she always stay married. And every time a ditching is performed the ranking of the current mate
improves. Thus, a woman can ditch at mostn times. As for stability, one can easily argue that it is
achieved.

Clearly, this algorithm performersO(n2) proposals, in the worst case.
Let us change the problem a little: The women fix their preferences lists in advance, and the

men (of course) set the preference list in a random uniform fashion. What is the expected number
of proposals this algorithm makes? LetTP denote this number.

Even this, is to hard to analyze. Let us instead define an amnesic algorithm where each male
randomly choose which woman to propose to randomly (proposing maybe to the same woman
several times). LetTA denote the number of proposals made by this algorithm.

Remark 1.2 This is an example ofPrinciple of Deferred Decisions– we analyze the algorithm
like makes its random decision when it really has to, instead of thinking about it as being fixed in
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advance (i.e., random preference lists precomputed in advanced vs. computing the next woman to
propose to randomly).

Definition 1.3 A random variableX stochastically dominatesa random variableY, if for anyz∈R,

we have Pr
[
X > z

]
≥ Pr

[
Y > z

]
.

Clearly,TA stochastically dominatesTP.
How do we analyze the behavior ofTA? Well, looking from the outside, it is clear that the

algorithm stops once all the women got proposals (as by then, all the women are married, and the
situation is stable).

This is a variant of the Coupon Collector problem, described below, and the following bound
holds (this follows from Theorem 2.2):

Theorem 1.4 For any constant c∈ R, and m= nlogn+ cn, we havelimn→∞ Pr
[
TA > m

]
= 1−

exp(−e−c).

Example 1.5 For c = 100, we have

lim
n→∞

Pr
[
TA > nlogn+100n

]
= 1−exp

(
−e−100)= 1−exp

(
−1/e100)≤ 1−

(
1−1/e100)=

1
e100,

sincee−x = 1−x+x2/2!−x3/3!... (Taylor expansion), as such, forx < 1, we havee−x ≥ 1−x.
This bound is quite small! The distribution ofTA is strongly concentrated aroundnlogn.

2 The Coupon Collector’s Problem

There aren types of coupons, and at each trial one coupon is picked in random. How many trials
one has to perform before picking all coupons? Letm be the number of trials preformed. We
would like to bound the probability thatm exceeds a certain number, and we still did not pick all
coupons.

Let Ci ∈ {1, . . . ,n} be the coupon picked in thei-th trial. The j-th trial is a success, ifCj was
not picked before in the firstj −1 trials. LetXi denote the number of trials from thei-th success,
till after the(i +1)-th success. Clearly, the number of trials performed is

X =
n−1

∑
i=0

Xi .

Clearly, the probability ofXi to succeed in a trial ispi = n−i
n , andXi has geometric distribution with

probability pi . As suchE[Xi ] = 1/pi , and var[Xi ] = q/p2 = (1− pi)/p2
i .

Thus,

E
[
X
]

=
n−1

∑
i=0

E
[
Xi

]
=

n−1

∑
i=0

n
n− i

= nHn = n(lnn+Θ(1)) = nlnn+O(n),

whereHn = ∑n
i=1

1
i is then-th Harmonic number.
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As for variance, using the independence ofX0, . . . ,Xn−1, we have

var
[
X
]

=
n−1

∑
i=0

var
[
Xi

]
=

n−1

∑
i=0

1− pi

p2
i

=
n−1

∑
i=0

1− (n− i)/n(
n−i
n

)2 =
n−1

∑
i=0

i/n(
n−i
n

)2 =
n−1

∑
i=0

i
n

(
n

n− i

)2

= n
n−1

∑
i=0

i
(n− i)2 = n

n

∑
i=1

n− i
i2

= n

(
n

∑
i=1

n
i2
−

n

∑
i=1

1
i

)
= n2

n

∑
i=1

1
i2
−nHn.

Since, limn→∞ ∑n
i=1

1
i2

= π/6, we have limn→∞
var
[
X
]

n2 = π
6.

This implies a weak bound on the concentration ofX, using Chebyshev inequality, but this is
going to be quite weaker than what we implied we can do.

A stronger bound, follows from the following observation. LetZr
i denote the event that thei-th

coupon was not picked in the firstr trials. Clearly,

Pr
[
Zr

i

]
=
(

1− 1
n

)r

≤ e−r/n.

Thus, forr = βnlogn, we have Pr
[
Zr

i

]
≤ e−(βnlogn)/n=n−β

. Thus,

Pr
[
X > βnlogn

]
≤ Pr

[⋃
i

Zβnlogn
i

]
≤ n·Pr

[
Z1

]
≤ n−β+1.

This is quite strong, but still not as strong as we can do.
We need the following:

For anyy≥ 1, and|x| ≤ 1, we have(
1−x2y

)
exy≤ (1+x)y ≤ exy

Lemma 2.1 Let c> 0 be a constant, m= nlnn+cn for a positive integer n. Then for any constant
k, we have

lim
n→∞

(
n
k

)(
1− k

n

)m

=
exp(−ck)

k!
.

Proof: By the above formula, we have(
1− k2m

n2

)
exp

(
−km

n

)
≤
(

1− k
n

)m

≤ exp

(
−km

n

)
.

Observe also that limn→∞

(
1− k2m

n

)
= 1, and exp(−km/n) = n−k exp(−ck). Also,

lim
n→∞

(
n
k

)
k!
nk = lim

n→∞

n(n−1) · · ·(n−k+1)
nk = 1.

Thus,

lim
n→∞

(
n
k

)(
1− k

n

)m

= lim
n→∞

nk

k!
exp

(
−km

n

)
= lim

n→∞

nk

k!
n−k exp(−ck) =

exp(−ck)
k!

.
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Theorem 2.2 Let the random variable X denote the number of trials for collecting each of the n
types of coupons. Then, for any constant c∈ R, and m= nlnn+cn, we have

lim
n→∞

Pr
[
X > m

]
= 1−exp

(
−e−c) .

Proof: We have Pr
[
X > m

]
= Pr

[
∪iZm

i

]
. By inclusion-exclusion, we have

Pr

[⋃
i

Zm
i

]
=

n

∑
i=1

(−1)i+1Pn
i ,

where

Pn
j = ∑

1≤i1<i2<...<i j≤n

Pr

[
j⋂

v=1

Zm
iv

]
.

Let Sn
k = ∑k

i=1(−1)i+1Pn
i . We know thatSn

2k ≤ Pr
[⋃

i Z
m
i

]
≤ Sn

2k+1.

By symmetry,

Pn
k =

(
n
k

)
Pr

[
k⋂

v=1

Zm
v

]
=
(

n
k

)(
1− k

n

)m

,

Thus,Pk = limn→∞ Pn
k = exp(−ck)/k!, by Lemma 2.1.

Let

Sk =
k

∑
j=1

(−1) j+1Pj =
k

∑
j=1

(−1) j+1exp(−c j)
j!

Clearly, limk→Sk = 1−exp(−e−c) by the Taylor expansion of exp(x) for x =−e−c. Indeed,

exp(x) =
∞

∑
j=0

x j

j!
=

∞

∑
j=0

(−e−c) j

j!
= 1+

∞

∑
j=0

(−1) j e−c j

j!

Clearly, limn→∞ Sn
k = Sk and limk→∞ Sk = 1−exp(−e−c). Thus, (using fluffy math), we have

lim
n→∞

Pr
[
X > m

]
= lim

n→∞
Pr
[
∪n

i=1Zm
i

]
= lim

n→∞
lim
k→∞

Sn
k = lim

k→∞
Sk = 1−exp

(
−e−c)
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