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”Wir mssen wissen, wir werden wissen” (We must know, we shall know)
—– David Hilbert

1 Tail Inequalities

1.1 The Chernoff Bound — Special Case

Theorem 1.1 Let X1, . . . , Xn be n independent random varaibles, such that Pr[Xi = 1] =
Pr[Xi = −1] = 1

2
, for i = 1, . . . , n. Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we have

Pr[Y ≥ ∆] ≤ e−∆2/2n.

Proof: Clearly, for an arbitrary t, to specified shortly, we have

Pr[Y ≥ ∆] = Pr[exp(tY ) ≥ exp(t∆)] ≤ E[exp(tY )]

exp(t∆)
,

the first part follows by the fact that exp(·) preserve ordering, and the second part follows
by the Markov inequality.
Observe that
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by the Taylor expansion of exp(·). Note, that (2k)! ≥ (k!)2k, and thus

E[exp(tXi)] =
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∞∑
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=
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again, by the Taylor expansion of exp(·). Next, by the independence of the Xis, we have

E[exp(tY )] = E

[
exp

(∑
i

tXi

)]
= E

[∏
i

exp(tXi)

]
=

n∏
i=1

E[exp(tXi)]

≤
n∏

i=1

et2/2 = ent2/2.

We have

Pr[Y ≥ ∆] ≤ exp(nt2/2)

exp(t∆)
= exp

(
nt2/2− t∆

)
.

Next, by minimizing the above quantity for t, we set t = ∆/n. We conclude,

Pr[Y ≥ ∆] ≤ exp

(
n

2

(
∆

n

)2

− ∆

n
∆

)
= exp

(
−∆2

2n

)
.

By the symmetry of Y , we get the following:

Corollary 1.2 Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] =
Pr[Xi = −1] = 1

2
, for i = 1, . . . , n. Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we have

Pr[|Y | ≥ ∆] ≤ 2e−∆2/2n.

Corollary 1.3 Let X1, . . . , Xn be n independent coin flips, such that Pr[Xi = 0] = Pr[Xi = 1] =
1
2
, for i = 1, . . . , n. Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we have

Pr
[∣∣∣Y − n

2

∣∣∣ ≥ ∆
]
≤ 2e−2∆2/n.

1.2 The Chernoff Bound — General Case

Here we present the Chernoff bound in a more general settings.

Question 1.4 Let

1. X1, . . . , Xn - n independent Bernoulli trials, where

Pr[Xi = 1] = pi, and Pr[Xi = 0] = qi = 1− pi.

Each Xi is known as a Poisson trials.

2. X =
∑b

i=1 Xi. µ = E[X] =
∑

i pi.

Question: Probability that X > (1 + δ)µ?
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Theorem 1.5 For any δ > 0,

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

.

Or in a more simplified form, for any δ ≤ 2e− 1,

Pr[X > (1 + δ)µ] < exp
(
−µδ2/4

)
, (1)

and
Pr[X > (1 + δ)µ] < 2−µ(1+δ), (2)

for δ ≥ 2e− 1.

Remark 1.6 Before going any further, it is maybe instrumental to understand what this
inequality implies. Set all probabilities to be pi = 1/2, and set δ = t/

√
µ. (

√
µ is ap-

proximately the standard deviation of X if pi = 1/2) Using very fluffy math, in particular
eδ ≈ 1 + δ), we get the following:

Pr[|X − µ| > tσX ] ≈ Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

≈
(

1 + δ

(1 + δ)1+δ

)n/2

=

(
1

1 + δ

)(t/
√

n)n/2

≈
(
e−δ
)(t/√n)n/2

= e−(t2/n)n/2 = e−t2 .

Thus, Chernoff inequality implies exponential decay with the standard deviation, instead of
just polynomial (like the Cheby’s inequality). We emphasize again that above calculation is
incorrect, and should only be interpreted as an intuition of what is going on.

Proof: (of Theorem 1.5)

Pr[X > (1 + δ)µ] = Pr
[
etX > et(1+δ)µ

]
.

By Markov inequality, we have:

Pr
[
X > (1 + δ)µ

]
<

E
[
etX
]

et(1+δ)µ

On the other hand,

E[etX ] = E
[
et(X1+X2...+Xn)

]
= E

[
etX1

]
· · ·E

[
etXn

]
.

Namely,

Pr
[
X > (1 + δ)µ

]
<

∏n
i=1 E

[
etXi

]
et(1+δ)µ

=

∏n
i=1((1− pi)e

0 + pie
t)

et(1+δ)µ
=

∏n
i=1(1 + pi(e

t − 1))

et(1+δ)µ
.
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Let y = pi(e
t − 1). We know that 1 + y < ey (since y > 0). Thus,

Pr
[
X > (1 + δ)µ

]
<

∏n
i=1 exp(pi(e

t − 1))

et(1+δ)µ
. =

exp(
∑n

i=1 pi(e
t − 1))

et(1+δ)µ

=
exp((et − 1)

∑n
i=1 pi)

et(1+δ)µ
=

exp((et − 1)µ)

et(1+δ)µ
=

(
exp(et − 1)

et(1+δ)

)µ

=

(
exp(δ)

(1 + δ)(1+δ)

)µ

,

if we set t = log(1 + δ).
For the proof of the simplified form, see Section 1.3.

Definition 1.7 F+(µ, δ) =
[

eδ

(1+δ)(1+δ)

]µ
.

Example 1.8 Arkansas Aardvarks win a game with probability 1/3. What is their prob-
ability to have a winning season with n games. By Chernoff inequality, this probability is
smaller than

F+(n/3, 1/2) =

[
e1/2

1.51.5

]n/3

= (0.89745)n/3 = 0.964577n.

For n = 40, this probability is smaller than 0.236307. For n = 100 this is less than 0.027145.
For n = 1000, this is smaller than 2.17221 · 10−16 (which is pretty slim and shady). Namely,
as the number of experiments is increases, the distribution converges to its expectation, and
this converge is exponential.

Exercise 1.9 Prove that for δ > 2e− 1, we have

F+(µ, δ) <

[
e

1 + δ

](1+δ)µ

≤ 2−(1+δ)µ.

Theorem 1.10 Under the same assumptions as Theorem 1.5, we have:

Pr[X < (1− δ)µ] < e−µδ2/2.

Definition 1.11 F−(µ, δ) = e−µδ2/2.
∆−(µ, ε) - what should be the value of δ, so that the probability is smaller than ε.

∆−(µ, ε) =

√
2 log 1/ε

µ

For large δ:

∆+(µ, ε) <
log2 (1/ε)

µ
− 1
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1.3 A More Convenient Form

Proof: (of simplified form of Theorem 1.5) Equation (2) is just Exercise 1.9. As for
Equation (1), we prove this only for δ ≤ 1/2. For details about the case 1/2 ≤ δ ≤ 2e − 1,
see [MR95]. By Theorem 1.5, we have

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

= exp(µδ − µ(1 + δ) ln(1 + δ)) .

The Taylor expansion of ln(1 + δ) is

δ − δ2

2
+

δ3

3
− δ4

4
+ · ≥ δ − δ2

2
,

for δ ≤ 1. Thus,

Pr[X > (1 + δ)µ] < exp
(
µ
(
δ −(1 + δ)

(
δ − δ2/2

)))
= exp

(
µ
(
δ − δ + δ2/2− δ2 + δ3/2

))
≤ exp

(
µ
(
−δ2/2 + δ3/2

))
≤ exp

(
−µδ2/4

)
,

for δ ≤ 1/2.

2 Application of the Chernoff Inequality – Routing in

a Parallel Computer

The following is based on Section 4.2 in [MR95].
G: A graph of processors. Packets can be sent on edges.
[1, . . . , N ]: The vertices (i.e., processors) of G.
N = 2n, and G is a hypercube. Each processes is a binary string b1b2 . . . bn.
Question: Given a permutation π, how to send the permutation and create minimum delay?

Theorem 2.1 For any deterministic oblivious permutation routing algorithm on a network
of N nodes each of out-degree n, there is a permutation for which the routing of the permu-
tation takes Ω(

√
N/n) time.

How do we sent a packet? We use bit fixing. Namely, the packet from the i node, always
go to the current adjacent node that have the first different bit as we scan the destination
string d(i). For example, packet from (0000) going to (1101), would pass through (1000),
(1100), (1101).
We assume each edge have a FIFO queue. Here is the algorithm:

(i) Pick a random intermediate destination σ(i) from [1, . . . , N ]. Packet vi travels to σ(i).

(ii) Wait till all the packet arrive to their intermediate destination.

(iii) Packet vi travels from σ(i) to its destination d(i).

We analyze only (i) as (iii) follows from the same analysis. ρi - the route taken by vi in (i).
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Exercise 2.2 Once a packet vj that travel along a path ρj can not leave a path ρi, and then
join it again later. Namely, ρi ∩ ρj is (maybe an empty) path.

Lemma 2.3 Let the route of vi follow the sequence of edges ρi = (e1, e2, . . . , ek). Let S be
the set of packets whose routes pass through at least one of (e1, . . . , ek). Then, the delay
incurred by vi is at most |S|.

Let Hij be an indicator variable that is 1 if ρi, ρj share an edge, 0 otherwise. Total delay
for vi is ≤

∑
j Hij. Note, that for a fixed i, the variables Hi1, . . . , HiN are independent (not

however, that H11, . . . , HNN are not independent!). For ρi = (e1, . . . , ek), let T (e) be the
number of packets (i.e., paths) that pass through e.

N∑
j=1

Hij ≤
k∑

j=1

T (ej) and thus E

[
N∑

j=1

Hij

]
≤ E

[
k∑

j=1

T (ej)

]
.

Because of symmetry, the variables T (e) have the same distribution for all the edges of G.
On the other hand, the expected length of a path is n/2, there are N packets, and there are
Nn/2 edges. We conclude E[T (e)] = 1. Thus

µ = E

[
N∑

j=1

Hij

]
≤ E

[
k∑

j=1

T (ej)

]
= E

[
|ρi|
]
≤ n

2
.

By the Chernoff inequality (Exercise 1.9), we have

Pr

[∑
j

Hij > 7n

]
≤ Pr

[∑
j

Hij > (1 + 13)µ

]
< 2−13µ ≤ 2−6n.

Since there are N = 2n packets, we know that with probability ≤ 2−5n all packets arrive to
their temporary destination in a delay of most 7n.

Theorem 2.4 Each packet arrives to its destination in ≤ 14n stages, in probability at least
1− 1/N (note that this is very conservative).
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