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They sought it with thimbles, they sought it with care;

They pursued it with forks and hope;

They threatened its life with a railway-share;

They charmed it with smiles and soap.

— The Hunting of the Snark, Lewis Carol

1 Martingales

1.1 Preliminaries

Let X, Y be two random variables. Let ρ(x, y) = Pr[(X = x) ∩ (Y = y)]. Then,

Pr
[
X = x

∣∣∣Y = y
]

=
ρ(x, y)

Pr[Y = y]
=

ρ(x, y)∑
z ρ(z, y)

and

E
[
X
∣∣∣Y = y

]
=
∑

x

xPr
[
X = x

∣∣∣Y = y
]

=

∑
x xρ(x, y)∑
z ρ(z, y)

=

∑
x xρ(x, y)

Pr[Y = y]
.

Definition 1.1 The random variable E
[
X
∣∣∣Y ] is the random variable f(y) = E

[
X
∣∣∣Y = y

]
.

Lemma 1.2 E
[
E
[
X
∣∣∣Y ]] = E

[
Y
]
.

Proof:

E
[
E
[
X
∣∣∣Y ]] = EY

[
E
[
X
∣∣∣Y = y

]]
=
∑

y

Pr[Y = y] E
[
X
∣∣∣Y = y

]
=

∑
y

Pr[Y = y]

∑
x xPr[X = x ∩ Y = y]

Pr[Y = y]

=
∑

y

∑
x

xPr[X = x ∩ Y = y] =
∑

x

x
∑

y

Pr[X = x ∩ Y = y]

=
∑

x

xPr[X = x] = E
[
X
]
.
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Lemma 1.3 E
[
Y · E

[
X
∣∣∣Y ]] = E

[
XY

]
.

Proof:

E
[
Y · E

[
X
∣∣∣Y ]] =

∑
y

Pr[Y = y] · y · E
[
X
∣∣∣Y = y

]
=

∑
y

Pr[Y = y] · y ·
∑

x xPr[X = x ∩ Y = y]

Pr[Y = y]

=
∑

x

∑
y

xy ·Pr[X = x ∩ Y = y] = E
[
XY

]
.

1.2 Martingales

Definition 1.4 A sequence of random variables X0, X1, . . . , is said to be a martingale se-

quence if for all i > 0, E
[
Xi

∣∣∣X0, . . . , Xi−1

]
= Xi−1.

Lemma 1.5 Let X0, X1, . . . , be a martingale sequence. Then, for all i ≥ 0, E[Xi] = E[X0].

An example for martingales is the sum of money after participating in a sequence of fair
bets.

Example 1.6 Let G be a random graph on the vertex set V = {1, . . . , n} obtained by
independently choosing to include each possible edge with probability p. The underlying
probability space is called Gn,p. Arbitrarily label the m = n(n− 1)/2 possible edges wit the
sequence 1, . . . ,m. For 1 ≤ j ≤ m, define the indicator random variable Ij, which takes
values 1 if the edge j is present in G, and has value 0 otherwise. These indicator variables
are independent and each takes value 1 with probability p.

Consider any real valued function f defined over the space of all graphs, e.g., the clique
number, which is defined as being the size of the largest complete subgraph. The edge
exposure martingale is defined to be the sequence of random variables X0, . . . , Xm such that

Xi = E
[
f(G)

∣∣∣ I1, . . . , Ik

]
,

while X0 = E(f(G)] and Xm = f(G). The fact that this sequence of random variable is a
martingale follows immediately from a theorem that would be described in the next lecture.

One can define similarly a vertex exposure martingale, where the graph Gi is the graph
induced on the first i vertices of the random graph G.

Theorem 1.7 (Azuma’s Inequzality) Let X0, . . . , Xm be a martingale with X0 = 0, and
|Xi+1 −Xi| ≤ 1 for all 0 ≤ i < m. Let λ > 0 be arbitrary. Then

Pr
[
Xm > λ

√
m
]

< e−λ2/2.

Proof: Let α = λ/
√

m. Let Yi = Xi −Xi−1, so that |Yi| ≤ 0 and E[Yi|X0, . . . , Xi−1] = 0.
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We are interested in bounding E
[
eαYi

∣∣∣X0, . . . , Xi−1

]
. Note that, for −1 ≤ x ≤ 1, we

have

eαx ≤ h(x) =
eα + e−α

2
+

eα − e−α

2
x,

as eαx is a convex function, h(−1) = e−α, h(1) = eα, and h(x) is a linear function. Thus,

E
[
eαYi

∣∣∣X0, . . . , Xi−1

]
≤ E

[
h(Yi)

∣∣∣X0, . . . , Xi−1

]
= h

(
E
[
Yi

∣∣∣X0, . . . , Xi−1

])
= h(0) =

eα + e−α

2

=
(1 + α + α2

2!
+ α3

3!
+ · · · ) + (1− α + α2

2!
− α3

3!
+ · · · )

2

= 1 +
α2

2
+

α4

4!
+

α6

6!
+ · · ·

≤ 1 +
1

1!

(
α2

2

)
+

1

2!

(
α2

2

)2

+
1

3!

(
α2

2

)3

+ · · · = eα2/2

Hence,

E
[
eαXm

]
= E

[
m∏

i=1

eαYi

]
= E

[(
m−1∏
i=1

eαYi

)
eαYm

]

= E

[(
m−1∏
i=1

eαYi

)
E
[
eαYm

∣∣∣X0, . . . , Xm−1

]]
≤ eα2/2E

[
m−1∏
i=1

eαYi

]
≤ emα2/2

Therefore, by Markov’s inequality, we have

Pr
[
Xm > λ

√
m
]

= Pr
[
eαXm > eαλ

√
m
]

=
E
[
eαXm

]
eαλ

√
m

= emα2/2−αλ
√

m

= exp
(
m(λ/

√
m)2/2− (λ/

√
m)λ

√
m
)

= e−λ2/2,

implying the result.

Example 1.8 Let χ(H) be the chromatic number of a graph H. What is chromatic number
of a random graph? How does this random variable behaves?

Consider the vertex exposure martingale, and let Xi = E
[
χ(G)

∣∣∣Gi

]
. Again, with-

out proving it, we claim that X0, . . . , Xn = X is a martingale, and as such, we have:

Pr[|Xn −X0| > λ
√

n] ≤ e−λ2/2. However, X0 = E[χ(G)], and Xn = E
[
χ(G)

∣∣∣Gn

]
= χ(G).

Thus,

Pr
[∣∣∣χ(G)− E

[
χ(G)

]∣∣∣ > λ
√

n
]
≤ e−λ2/2.

Namely, the chromatic number of a random graph is high concentrated! And we do not even
know, what is the expectation of this variable!
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2 Even more probability

Definition 2.1 A σ-field (Ω, F) consists of a sample space Ω (i.e., the atomic events) and a
collection of subsets F satisfying the following conditions:

1. ∅ ∈ F.

2. C ∈ F ⇒ C ∈ F.

3. C1, C2, . . . ∈ F ⇒ C1 ∪ C2 . . . ∈ F.

Definition 2.2 Given a σ-field (Ω, F), a probability measure Pr : F → R+ is a function that
satisfies the following conditions.

1. ∀A ∈ F, 0 ≤ Pr[A] ≤ 1.

2. Pr[Ω] = 1.

3. For mutually disjoint events C1, C2, . . . , we have Pr[∪iCi] =
∑

i Pr[Ci].

Definition 2.3 A probability space (Ω, F,Pr) consists of a σ-field (Ω, F) with a probability
measure Pr defined on it.
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