Martingales

497 - Randomized Algorithms

Sariel Har-Peled

September 25, 2002

They sought it with thimbles, they sought it with care;
They pursued it with forks and hope;
They threatened its life with a railway-share;
They charmed it with smiles and soap.

- The Hunting of the Snark, Lewis Carol

1 Martingales

1.1 Preliminaries

Let X, Y be two random variables. Let $\rho(x, y)=\operatorname{Pr}[(X=x) \cap(Y=y)]$. Then,

$$
\operatorname{Pr}[X=x \mid Y=y]=\frac{\rho(x, y)}{\operatorname{Pr}[Y=y]}=\frac{\rho(x, y)}{\sum_{z} \rho(z, y)}
$$

and

$$
E[X \mid Y=y]=\sum_{x} x \operatorname{Pr}[X=x \mid Y=y]=\frac{\sum_{x} x \rho(x, y)}{\sum_{z} \rho(z, y)}=\frac{\sum_{x} x \rho(x, y)}{\operatorname{Pr}[Y=y]}
$$

Definition 1.1 The random variable $E[X \mid Y]$ is the random variable $f(y)=E[X \mid Y=y]$.
Lemma 1.2 $E[E[X \mid Y]]=E[Y]$.
Proof:

$$
\begin{aligned}
E[E[X \mid Y]] & =E_{Y}[E[X \mid Y=y]]=\sum_{y} \operatorname{Pr}[Y=y] E[X \mid Y=y] \\
& =\sum_{y} \operatorname{Pr}[Y=y] \frac{\sum_{x} x \operatorname{Pr}[X=x \cap Y=y]}{\operatorname{Pr}[Y=y]} \\
& =\sum_{y} \sum_{x} x \operatorname{Pr}[X=x \cap Y=y]=\sum_{x} x \sum_{y} \operatorname{Pr}[X=x \cap Y=y] \\
& =\sum_{x} x \operatorname{Pr}[X=x]=E[X] .
\end{aligned}
$$

Lemma 1.3 $E[Y \cdot E[X \mid Y]]=E[X Y]$.
Proof:

$$
\begin{aligned}
E[Y \cdot E[X \mid Y]] & =\sum_{y} \operatorname{Pr}[Y=y] \cdot y \cdot E[X \mid Y=y] \\
& =\sum_{y} \operatorname{Pr}[Y=y] \cdot y \cdot \frac{\sum_{x} x \operatorname{Pr}[X=x \cap Y=y]}{\operatorname{Pr}[Y=y]} \\
& =\sum_{x} \sum_{y} x y \cdot \operatorname{Pr}[X=x \cap Y=y]=E[X Y] .
\end{aligned}
$$

1.2 Martingales

Definition 1.4 A sequence of random variables X_{0}, X_{1}, \ldots, is said to be a martingale sequence if for all $i>0, E\left[X_{i} \mid X_{0}, \ldots, X_{i-1}\right]=X_{i-1}$.

Lemma 1.5 Let X_{0}, X_{1}, \ldots, be a martingale sequence. Then, for all $i \geq 0, E\left[X_{i}\right]=E\left[X_{0}\right]$.
An example for martingales is the sum of money after participating in a sequence of fair bets.

Example 1.6 Let G be a random graph on the vertex set $V=\{1, \ldots, n\}$ obtained by independently choosing to include each possible edge with probability p. The underlying probability space is called $\mathcal{G}_{n, p}$. Arbitrarily label the $m=n(n-1) / 2$ possible edges wit the sequence $1, \ldots, m$. For $1 \leq j \leq m$, define the indicator random variable I_{j}, which takes values 1 if the edge j is present in G, and has value 0 otherwise. These indicator variables are independent and each takes value 1 with probability p.

Consider any real valued function f defined over the space of all graphs, e.g., the clique number, which is defined as being the size of the largest complete subgraph. The edge exposure martingale is defined to be the sequence of random variables X_{0}, \ldots, X_{m} such that

$$
X_{i}=E\left[f(G) \mid I_{1}, \ldots, I_{k}\right],
$$

while $X_{0}=E(f(G)]$ and $X_{m}=f(G)$. The fact that this sequence of random variable is a martingale follows immediately from a theorem that would be described in the next lecture.

One can define similarly a vertex exposure martingale, where the graph G_{i} is the graph induced on the first i vertices of the random graph G.

Theorem 1.7 (Azuma's Inequzality) Let X_{0}, \ldots, X_{m} be a martingale with $X_{0}=0$, and $\left|X_{i+1}-X_{i}\right| \leq 1$ for all $0 \leq i<m$. Let $\lambda>0$ be arbitrary. Then

$$
\operatorname{Pr}\left[X_{m}>\lambda \sqrt{m}\right]<e^{-\lambda^{2} / 2}
$$

Proof: Let $\alpha=\lambda / \sqrt{m}$. Let $Y_{i}=X_{i}-X_{i-1}$, so that $\left|Y_{i}\right| \leq 0$ and $E\left[Y_{i} \mid X_{0}, \ldots, X_{i-1}\right]=0$.

We are interested in bounding $E\left[e^{\alpha Y_{i}} \mid X_{0}, \ldots, X_{i-1}\right]$. Note that, for $-1 \leq x \leq 1$, we have

$$
e^{\alpha x} \leq h(x)=\frac{e^{\alpha}+e^{-\alpha}}{2}+\frac{e^{\alpha}-e^{-\alpha}}{2} x,
$$

as $e^{\alpha x}$ is a convex function, $h(-1)=e^{-\alpha}, h(1)=e^{\alpha}$, and $h(x)$ is a linear function. Thus,

$$
\begin{aligned}
E\left[e^{\alpha Y_{i}} \mid X_{0}, \ldots, X_{i-1}\right] & \leq E\left[h\left(Y_{i}\right) \mid X_{0}, \ldots, X_{i-1}\right]=h\left(E\left[Y_{i} \mid X_{0}, \ldots, X_{i-1}\right]\right) \\
& =h(0)=\frac{e^{\alpha}+e^{-\alpha}}{2} \\
& =\frac{\left(1+\alpha+\frac{\alpha^{2}}{2!}+\frac{\alpha^{3}}{3!}+\cdots\right)+\left(1-\alpha+\frac{\alpha^{2}}{2!}-\frac{\alpha^{3}}{3!}+\cdots\right)}{2} \\
& =1+\frac{\alpha^{2}}{2}+\frac{\alpha^{4}}{4!}+\frac{\alpha^{6}}{6!}+\cdots \\
& \leq 1+\frac{1}{1!}\left(\frac{\alpha^{2}}{2}\right)+\frac{1}{2!}\left(\frac{\alpha^{2}}{2}\right)^{2}+\frac{1}{3!}\left(\frac{\alpha^{2}}{2}\right)^{3}+\cdots=e^{\alpha^{2} / 2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
E\left[e^{\alpha X_{m}}\right] & =E\left[\prod_{i=1}^{m} e^{\alpha Y_{i}}\right]=E\left[\left(\prod_{i=1}^{m-1} e^{\alpha Y_{i}}\right) e^{\alpha Y_{m}}\right] \\
& =E\left[\left(\prod_{i=1}^{m-1} e^{\alpha Y_{i}}\right) E\left[e^{\alpha Y_{m}} \mid X_{0}, \ldots, X_{m-1}\right]\right] \leq e^{\alpha^{2} / 2} E\left[\prod_{i=1}^{m-1} e^{\alpha Y_{i}}\right] \\
& \leq e^{m \alpha^{2} / 2}
\end{aligned}
$$

Therefore, by Markov's inequality, we have

$$
\begin{aligned}
\operatorname{Pr}\left[X_{m}>\lambda \sqrt{m}\right] & =\operatorname{Pr}\left[e^{\alpha X_{m}}>e^{\alpha \lambda \sqrt{m}}\right]=\frac{E\left[e^{\alpha X_{m}}\right]}{e^{\alpha \lambda \sqrt{m}}}=e^{m \alpha^{2} / 2-\alpha \lambda \sqrt{m}} \\
& =\exp \left(m(\lambda / \sqrt{m})^{2} / 2-(\lambda / \sqrt{m}) \lambda \sqrt{m}\right)=e^{-\lambda^{2} / 2}
\end{aligned}
$$

implying the result.
Example 1.8 Let $\chi(H)$ be the chromatic number of a graph H. What is chromatic number of a random graph? How does this random variable behaves?

Consider the vertex exposure martingale, and let $X_{i}=E\left[\chi(G) \mid G_{i}\right]$. Again, without proving it, we claim that $X_{0}, \ldots, X_{n}=X$ is a martingale, and as such, we have: $\operatorname{Pr}\left[\left|X_{n}-X_{0}\right|>\lambda \sqrt{n}\right] \leq e^{-\lambda^{2} / 2}$. However, $X_{0}=E[\chi(G)]$, and $X_{n}=E\left[\chi(G) \mid G_{n}\right]=\chi(G)$. Thus,

$$
\operatorname{Pr}[|\chi(G)-E[\chi(G)]|>\lambda \sqrt{n}] \leq e^{-\lambda^{2} / 2}
$$

Namely, the chromatic number of a random graph is high concentrated! And we do not even know, what is the expectation of this variable!

2 Even more probability

Definition 2.1 A σ-field (Ω, \mathbb{F}) consists of a sample space Ω (i.e., the atomic events) and a collection of subsets \mathbb{F} satisfying the following conditions:

1. $\emptyset \in \mathbb{F}$.
2. $C \in \mathbb{F} \Rightarrow \bar{C} \in \mathbb{F}$.
3. $C_{1}, C_{2}, \ldots \in \mathbb{F} \Rightarrow C_{1} \cup C_{2} \ldots \in \mathbb{F}$.

Definition 2.2 Given a σ-field (Ω, \mathbb{F}), a probability measure $\operatorname{Pr}: \mathbb{F} \rightarrow \mathbb{R}^{+}$is a function that satisfies the following conditions.

1. $\forall A \in \mathbb{F}, 0 \leq \operatorname{Pr}[A] \leq 1$.
2. $\operatorname{Pr}[\Omega]=1$.
3. For mutually disjoint events C_{1}, C_{2}, \ldots, we have $\operatorname{Pr}\left[\cup_{i} C_{i}\right]=\sum_{i} \operatorname{Pr}\left[C_{i}\right]$.

Definition 2.3 A probability space $(\Omega, \mathbb{F}, \operatorname{Pr})$ consists of a σ-field (Ω, \mathbb{F}) with a probability measure Pr defined on it.

