
The Probabilistic Method IV
497 - Randomized Algorithms

Sariel Har-Peled

October 10, 2002

At other times you seemed to me either pitiable or contemptible, eunuchs, artificially confined to an

eternal childhood, childlike and childish in your cool, tightly fenced, neatly tidied playground and

kindergarten, where every nose is carefully wiped and every troublesome emotion is soothed, every

dangerous thought repressed, where everyone plays nice, safe, bloodless games for a lifetime and every

jagged stirring of life, every strong feeling, every genuine passion, every rapture is promptly checked,

deflected and neutralized by meditation therapy. – The Glass Bead Game, Hermann Hesse

1 The Lovász Local Lemma

Lemma 1.1 (i) Pr
[
A

∣∣∣ B ∩ C
]

=
Pr

[
A∩B

∣∣∣ C
]

Pr
[
B

∣∣∣ C
]

(ii) Let η1, . . . , ηn be n events which are not necessarily independent. Then,

Pr
[
∩n

i=1ηi

]
= Pr

[
η1

]
∗ Pr

[
η2

∣∣∣ η1

]
∗ Pr

[
η3

∣∣∣ η1 ∩ η2

]
∗ . . . ∗ Pr

[
ηn

∣∣∣ η1 ∩ . . . ∩ ηn−1

]
.

Proof:

Pr
[
A ∩B

∣∣∣ C
]

Pr
[
B

∣∣∣ C
] =

Pr[A ∩B ∩ C]

Pr[C]

/
Pr[B ∩ C]

Pr[C]
=

Pr[A ∩B ∩ C]

Pr[B ∩ C]
= Pr

[
A

∣∣∣ B ∩ C
]
.

As for (ii), we already saw it and used it in the minimum cut algorithm lecture.

Lemma 1.2 (Lovász Local Lemma) Let G(V, E) be a dependency graph for events C1,
. . . , Cn. Suppose that there exist xi ∈ [0, 1], for 1 ≤ i ≤ n such that

Pr[Ci] ≤ xi

∏
(i,j)∈E

(1− xj) .

Then

Pr
[
∩n

i=1Ci

]
≥

n∏
i=1

(1− xi) .

1

Proof: Let S denote a subset of the vertices from {1, . . . , n}. We first establish by
induction on k = |S| that for any S and for any i such that i /∈ S,

Pr
[
Ci

∣∣∣∩j∈SCj

]
≤ xi. (1)

For S = ∅, we have by assumption that Pr
[
Ci

∣∣∣∩j∈SCj

]
= Pr[Ci] ≤ xi

∏
(i,j)∈E(1− xj) ≤

xi.

Thus, let N =
{

j ∈ S
∣∣∣ (i, j) ∈ E

}
, and let R = S \N . If N = ∅, then we have that Ci

is mutually independent of the events of C(R) =
{

Cj

∣∣∣ j ∈ R
}

. Thus, Pr
[
Ci

∣∣∣∩j∈SCj

]
=

Pr
[
Ci

∣∣∣∩j∈RCj

]
= Pr[Ci] ≤ xi, by arguing as above.

By Lemma 1.1 (i), we have that

Pr

[
Ci

∣∣∣∣∣ ⋂
j∈S

Cj

]
=

Pr
[
Ci ∩

(
∩j∈NCj

) ∣∣∣∩m∈RCm

]
Pr

[
∩j∈NCj

∣∣∣∩m∈RCm

] .

We bound the numerator by

Pr
[
Ci ∩

(
∩j∈NCj

) ∣∣∣∩m∈RCm

]
≤ Pr

[
Ci

∣∣∣∩m∈RCm

]
= Pr[Ci] ≤ xi

∏
(i,j)∈E

(1− xj) ,

since Ci is mutually independent of C(R). As for the denominator, let N = {j1, . . . , jr}. We
have, by Lemma 1.1 (ii), that

Pr
[
Cj1 ∩ . . . ∩ Cjr

∣∣∣∩m∈RCm

]
= Pr

[
Cj1

∣∣∣∩m∈RCm

]
Pr

[
Cj2

∣∣∣ Cj1 ∩
(
∩m∈RCm

)]
· · ·Pr

[
Cjr

∣∣∣ Cj1 ∩ . . . ∩ Cjr−1

(
∩m∈RCm

)]
=

(
1−Pr

[
Cj1

∣∣∣∩m∈RCm

])(
1−Pr

[
Cj2

∣∣∣ Cj1 ∩
(
∩m∈RCm

)])
· · ·

(
1−Pr

[
Cjr

∣∣∣ Cj1 ∩ . . . ∩ Cjr−1

(
∩m∈RCm

)])
≥ (1− xj1) · · ·(1− xjr) ≥

∏
(i,j)∈E

(1− xj) ,

by Equation (1) and induction, as every probability term in the above expression has less

than |S| items involved. It thus follows, that Pr
[
Ci

∣∣∣ ⋂
j∈S Cj

]
≤ xi.

Now, the proof of the lemma, follows from

Pr
[
∩n

i=1Ci

]
=(1−Pr[C1])

(
1−Pr

[
C2

∣∣∣ C1

])
· · ·

(
1−Pr

[
Cn

∣∣∣∩n−1
i=1 Ci

])
≥

n∏
i=1

(1− xi) .

Corollary 1.3 Let C1, . . . , Cn be events, with Pr[Ci] ≤ p for all i. If each event is mutually
independent of all other events except for at most d, and if ep(d+1) ≤ 1, then Pr

[
∩n

i=1Ci

]
>

0.

2

Proof: If d = 0 the result is trivial, as the events are independent. Otherwise, there is
a dependency graph, with every vertex having degree at most d. Apply Lemma 1.2 with
xi = 1

d+1
. Observe that

xi(1− xi)
d =

1

d + 1

(
1− 1

d + 1

)d

>
1

d + 1
· 1

e
≥ p,

by assumption and the fact that
(
1− 1

d+1

)d
> 1/e. To see that, observe that, observe that

we need to show that 1/
(
1− 1

d+1

)d
< e, which is equivalent to ((d + 1)/d) < e1/d. However,

d + 1

d
= 1 +

1

d
< 1 +

(
1

d

)
+

1

2!

(
1

d

)2

+
1

3!

(
1

d

)3

+ · · · = e1/d,

establishing the claim.

1.1 Application to k-SAT

We are given a instance I of k-SAT, where every clause contains k literals, there are m
clauses, and every one of the n variables, appears in at most 2k/50 clauses.

Consider a random assignment, and let Ci be the event that the i-clause was not satisfied.
We know that p = Pr[Ci] = 2−k, and furthermore, Ci depends on at most d = k2k/50 other
events. Since ep(d+1) = e

(
kk/50 + 1

)
2−k < 1, for k ≥ 4, we conclude that by Corollary 1.3,

that
Pr[I have a satisfying assignment] = Pr[∪iCi] > 0.

1.1.1 An efficient algorithm

The above, just prove that a satisfying assignment exists. We next show a polynomial
algorithm (in m) for the computation of such an assignment (the algorithm will not be
polynomial in k).

Let G be the dependency graph I, where two clauses are connected if they share a
variable. We start assigning values to the variables one by one.

Definition 1.4 A clause Ci is dangerous if both the following conditions hold:

1. k/2 literals of Ci have been fixed.

2. Ci is still unsatisfied.

After assigning each value, we discover all the dangerous clauses, and we defer all the
unassigned variables participating in such a clause.

A clause had survived if it is not satisfied by the variables fixed in the first stage. Note,
that a clause that survived must have a dangerous clause as a neighbor in the dependency
graph G. Not that I ′, the instance remaining from I after the first stage, has at least k/2
unspecified variables in each clause. An every clause of I ′ has at most d = 2k/50 neighbors
in G. It follows, that again, we can apply Lovász local lemma to conclude that I ′ has a
satisfying assignment.

Let G′ denote the dependency graph for I ′. We need the following technical lemma.

3

Definition 1.5 Two connected graphs G1 = (V1, E1) and G2 = (V2, E2), where V1, V2 ⊆
{1, . . . , n} are unique if V1 6= V2.

Lemma 1.6 Let G be a graph with degree at most d and with n vertices. Then, the number
of unique subgraphs of G having r vertices is at most nd2r.

Proof: Let H be a connected subtree of G, and duplicate every edge of H. Let H ′ be
the resulting graph from H. Clearly, H ′ is Eulerian, and as such posses a Eulerian path π of
length at most 2(r − 1), which can be specified, by picking a starting vertex v, and writing
down for the i-th vertex of π which of the d possible neighbors, is the next vertex in π. Thus,
there are st most nd2(r−1) ways of specifying π, and thus, there are at most nd2(r−1) unique
subgraphs in G of size r.

Lemma 1.7 With probability 1 − o(1), all connected components of G′ have size at most
O(log m).

Proof: Let G4 be a graph formed from G by connecting any pair of vertices of G of
distance exactly 4 from each other. The degree of a vertex of G4 is at most O(d4).

Let U be a set of r vertices of G, such that every pair is in distance at least 4 from each
other in G. We are interested in bounding the probability that all the clauses of U survive
the first stage.

The probability that a clause survive is bounded by 2−k/2(d + 1). Furthermore, the
survival of two clauses in U is an independent event, as no neighbor of Ci.Cj ∈ U share a
variable (because of the distance 4 requirement). We conclude, that the probability that all
the vertices U appear in G′ is bounded by(

2−k/2(d + 1)
)r

.

On the other hand, the number of unique such sets of size r, is bounded by the number
of unique subgraphs of G4 of size r, which is bounded by md8r, by Lemma 1.6. Thus, the
probability of any connected subgraph of G4 of size r = b log m to survive in G′ is smaller
than

md8r
(
2−k/2(d + 1)

)r
= o(1).

Note, however, that if a connected component of G′ has more than L vertices, than there must
be a connected component having L/d3 vertices in G4 that had survived in G′. We conclude,
that with probability o(1), no connected component of G′ has more than O(d3 log m) =
O(log m) vertices (note, that we consider k to be a constant, and thus, also d).

Thus, after the first stage, we are left with fragments of (k/2)-SAT, where every fragment
has size at most O(log m), and thus having at most O(log m) variables. Thus, we can by
brute force find the satisfying assignment to each such fragment in time polynomial in m.
We conclude:

Theorem 1.8 The above algorithm finds a satisfying truth assignment for any instance of
k-SAT containing m clauses, which each variable is contained in at most 2k/50 clauses, in
expected time polynomial in m.

4

