
Minimum Cut in a Graph
497 - Randomized Algorithms

Sariel Har-Peled

September 3, 2002

Paul Erd̋os (1913-1996) - a famous mathematician, believed that God has a book, called “The
Book” in which god maintains the perfect and most elegant mathematical proofs. Every once in
a while, god let mortals peek in the book and “steal” a beautiful proofs. Erdős also said that you
need not believe in God, but, as a mathematician, you should believe in The Book.

See: “Proofs from THE BOOK”, Aigner and Ziegler, 2001.

1 Min Cut

Compute the cut with minimum number of edges in the graph. Namely, findS⊆ V such that
(S× (V−S))∩E is as small as possible, andS is neither empty nor all the vertices of the graph
G = (V,E).

1

1.1 Some Definitions

Definition 1.1 The conditional probability ofX givenY is

Pr
[
X = x

∣∣∣Y = y
]

=
Pr

[
(X = x)∩ (Y = y)

]
Pr

[
Y = y

] .

An equivalent, useful statement of this is that:

Pr
[
(X = x)∩ (Y = y)

]
= Pr

[
X = x|Y = y

]
∗Pr

[
Y = y

]
Two eventsX andY are independent, ifP

[
X = x∩Y = y

]
= P

[
X = x

]
∗P

[
Y = y

]
. In partic-

ular, if X andY are independent, then

Pr
[
X = x

∣∣∣Y = y
]

= Pr
[
X = x

]
.

Let η1, . . . ,ηn ben events which are not necessarily independent. Then,

Pr
[
∩n

i=1ηi

]
= Pr

[
η1

]
∗Pr

[
η2

∣∣∣η1

]
∗Pr

[
η3

∣∣∣η1∩η2

]
∗ . . .∗Pr

[
ηn

∣∣∣η1∩ . . .∩ηn−1

]
2 Algorithm

The basic operation, is edge contraction:

X Y
Z

The new graph is denoted byG/xy.
Operation can be implemented inO(n) time for a graph withn vertices (how?).

Observation 2.1 The size of the in G/xy is at least as large as the cut in G (as long as G/xy as at
least one edge). Since any cut in G/xy has a corresponding cut of the same cardinality in G.

Observation 2.2 Let e1, . . . ,en−2 be a sequence of edges in G, such that none of them is in the min-
cut, and such that G′ = G/{e1, . . . ,en−2} is a single multi-edge. Then, this multi-edge correspond
to the min-cut in G.

2

Idea: Let us find a sequence of edgese1, . . . ,en−2, such thatG/{e1, . . . ,en−2} corresponds to the
minimum cut.

Problem: Argumentation is circular, how can we find a sequence of edges that are not in the cut
without knowing what the cut is???

Lemma 2.3 If a graph G has a min-cut of size k, and it has n vertices, then|E(G)| ≥ kn/2.

Proof: Vertex degree is at leastk. Now count the number of edges...

Lemma 2.4 If we pick in random an edge e from a graph G, then with probability at most2/n it
belong to the min-cut.

Proof: There are at leastnk/2 edges in the graph and exactlyk edges in the cut. Thus, the proba-
bility of picking an edge from the min-cut is small thenk/(nk/2) = 2/n.

Algorithm MinCutInner(G)
G0←G
i = 0
while Gi has more than two verticesdo

Pick randomly an edgeei from the edges ofGi

Gi+1←Gi/ei

i← i +1

Let (S,V−S) be the cut in the original graph corresponding toGi

return (S,V−S)

Observation 2.5 MinCutInner runs in O
(
n2

)
time.

Observation 2.6 The algorithm always outputs a cut, and the cut is not smaller than the minimum
cut.

Lemma 2.7 MinCutInner outputs the min cut in probability≥ 2/n(n−1).

Proof: Let ηi be the event thatei is not in the min-cut ofGi . Clearly, MinCut outputs the minimum
cut if η0, . . . ,ηn−3 all happen (namely, all edges picked are outside the min cut).

By the above lemma,

Pr
[
ηi

∣∣∣η1∩ . . .∩ηi−1

]
≥ 1− 2

|V(Gi)|
= 1− 2

n− i

Thus,

Pr
[
η0∩ . . .∩ηn−2

]
= Pr

[
η0

]
∗Pr

[
η1

∣∣∣η0

]
∗Pr

[
η2

∣∣∣η0∩η1

]
∗ . . .∗Pr

[
ηn−3

∣∣∣η0∩ . . .∩ηn−4

]

3

Thus,

Pr
[
η0∩ . . .∩ηn−2

]
≥

n−3

∏
i=0

(
1− 2

n− i

)
=

n−3

∏
i=0

n− i−2
n− i

=
n−2

n
∗ n−3

n−1
∗ n−4

n−2
. . .

=
2

n· (n−1)
.

Definition 2.8 (informal) Amplification is the process of running an experiment again and again
till the things we want to happed with good probability.

Let MinCut be the algorithm that runsMinCutInner n(n−1) times and return the minimum cut
computed.

Lemma 2.9 The probability that MinCut fails to return the min-cut is< 0.14.

Proof: The probability of failure is at most(
1− 2

n(n−1)

)n(n−1)

≤ exp

(
− 2

n(n−1)
·n(n−1)

)
= exp(−2) < 0.14,

since 1−x≤ e−x for 0≤ x≤ 1, as you can (and should) verify.

Theorem 2.10 One can compute the min-cut in O(n4) time with constant probability to get a
correct result. In O

(
n4 logn

)
time the min-cut is returned with high probability.

Note: that the algorithm is extremely simple, can we push the basic idea further and get faster
algorithm? (or alternatively, can we complicate things, and get a faster algorithm?)

So, why is the algorithm needs so many executions? Because the probability deteriorates very
quickly once the graph becomes small. The probability for success in contracting the graph till it
hast vertices is:

Pr
[
η0∩ . . .∩ηn−t−1

]
≥

n−t−1

∏
i=0

(
1− 2

n− i

)
=

n−t−1

∏
i=0

n− i−2
n− i

=
n−2

n
∗ n−3

n−1
∗ n−4

n−2
. . . =

t(t−1)
n· (n−1)

.

Thus, as long ast is large (that ist ≥ n/c, wherec is a constant), the probability of hitting the cut
is pretty small.

Observation 2.11 As the graph get smaller, the probability to make a bad choice increases.

Observation 2.12 Intuitive idea: Run the algorithm more times when the graph get small.

Contract(G, t)
while |V(G)|> t do

Pick a random edgee in G.
G←G/e

return G

4

Namely,Contract(G, t) shrinksG till it has only t vertices.
FastCut(G = (V,E))

INPUT: G multigraph
begin

n← |V(G)|
if n≤ 6 then

compute min-cut ofG using brute force and return cut.
t← n/

√
2

H1← Contract(G, t)
H2← Contract(G, t) /* Contract is randomized!!! */
X1← FastCut(H1)
X2← FastCut(H2)

return the smaller cut out ofX1 andX2.
end

Lemma 2.13 The running time ofFastCut (G) is O
(
n2 logn

)
, where n= |V(G)|.

Proof: Well, we perform two calls toContract(G, t) which takesO(n2) time. And then we
perform two recursive calls, on the resulting graphs. We have:

T(n) = O
(
n2)+2T

(
n√
2

)
The solution to this recurrence isO

(
n2 logn

)
as one can easily (and should) verify.

Exercise 2.14Show that one can modifyFastCut so that it uses only O(n2) space.

Lemma 2.15 The probability thatContract (G, t) hadnotcontracted the min-cut is at least1/2.

Theorem 2.16 FastCut finds the min-cut with probability larger thanΩ(1/ logn).

Proof: Let P(t) be the probability that the algorithm succeeds on a graph witht vertices.
The probability to succeed in the first call onH1 is the probability thatContract did not hit

the min cut (this probability is larger than 1/2 by the above lemma), times the probability that the
algorithm succeeded onH1 (those two events are independent. Thus, the probability to succeed on

the call onH1 is at least(1/2)∗P(t/
√

2), Thus, the probability to fail onH1 is≤ 1− 1
2P

(
t√
2

)
.

The probability to fail on bothH1 andH2 is smaller than(
1− 1

2
P

(
t√
2

))2

.

And thus, the probability for the algorithm to succeed is

P(t)≥ 1−
(

1− 1
2

P

(
t√
2

))2

= P

(
t√
2

)
− 1

4

(
P

(
t√
2

))2

.

5

We need to solve this recurrence. Divide both sides of the equation byP
(

t/
√

2
)

we have:

P(t)
P(t/
√

2)
≥ 1− 1

4
P(t/
√

2)

It is now easy,1 to verify that this inequality holds forP(t) = 1/ logt. Indeed,

1/ logt

1/ log(t/
√

2)
≥ 1− 1

4(log(t/
√

2))
⇐⇒ logt− log

√
2

logt
≥ 4(logt− log

√
2)−1

4(logt− log
√

2)

Let ∆ = logt. Then,

∆− log
√

2
∆

≥ 4(∆− log
√

2)−1

4(∆− log
√

2)

⇐⇒ 4(∆− log
√

2)2≥ 4∆(∆− log
√

2)−∆
⇐⇒ −8∆ log

√
2+4log2

√
2≥−4∆ log

√
2−∆

⇐⇒ ∆−4∆ log
√

2+4log2
√

2≥ 0

⇐⇒
(

∆−2log
√

2
)2
≥ 0,

which is definitely true. Thus, we just verified thatP(t)≥ 1/ logt, for t large enough. We conclude,
that the algorithm succeeds in finding the min-cut in probability≥ 1/ logt = 1/ logn.

Exercise 2.17Prove, that running ofFastCut c· log2n times, guarantee that the algorithm out-
puts the min-cut with probability≥ 1−1/n2 for c a constant large enough.

3 Notes

TheMinCutInner algorithm was developed by David Karger during his PhD thesis in Stanford.
The fast algorithm is a joint work with Stein. David Karger is currently a processor to CS in MIT.
Clifford Stein is a coauthor of CLRS [CLRS01], and he is currently in Columbia university.

The basic algorithm of the min-cut is described in [MR95, pages 7–9], the faster algorithm is
described in [MR95, pages 289–295].

References

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms.
MIT Press / McGraw-Hill, Cambridge, Mass., 2001.

[MR95] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press,
New York, NY, 1995.

1easy = I did it in less than five days.

6

