Randomized Algorithms

Sariel Har-Peled

August 29, 2002

Intro

Quicksort

Items S_{1}, \ldots, S_{n} to be sorted

- suppose could pick middle element:

$$
T(n)=2 T(n / 2)+O(n)=O(n \log n)
$$

works since divides into much smaller subproblems

- picking middle is hard. But an almost middle element is OK.
- pick random element. "probably" near middle and divides problem in two
- bound expected number of comparisons C
- $X_{i j}=1$ if compare i to j
- linearity of expectation: $E[C]=\sum E\left[X_{i j}\right]$
- $E\left[X_{i j}\right]=p_{i j}$
- Consider smallest recursive call involving both i and j.
- pivot must be one of S_{i}, \ldots, S_{j}. all equally likely
- S_{i} and S_{j} get compared if pivot is S_{i} or S_{j}
- probability is at most $2 /(j-i+1)$ (may have outer elements)
- analysis:

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j>i} p_{i j} & \leq \sum_{i=1}^{n} \sum_{j>i} 2 /(j-i+1) \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n-i+1} 2 / k \\
& \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} 1 / k \\
& \leq 2 n H_{n}
\end{aligned}
$$

(Define H_{n}, claim $O(\log n)$.)

$$
=O(n \log n)
$$

- analysis holds for every input, doesn't assume random input
- we proved expected. can show high probability
- how did we pick a random elements?
- algorithm always works, but might be slow.

BSP

- linearity of expectation.
- Rendering an image
- render a collection of polygons (lines)
- painters algorithm: draw from back to front; let front overwrite
- need to figure out order with respect to user
- define BSP.
- BSP is a data structure that makes order determination easy
- Build in preprocess step, then render fast.
- Choose any hyperplane (root of tree), split lines onto correct side of hyperplane, recurse
- If user is on side 1 of hyperplane, then nothing on side 2 blocks side 1, so paint it first. Recurse.
- time=BSP size
- sometimes must split to build BSP
- how limit splits?
- autopartitions
- random auto
- analysis
- index $(u, v)=k$ if k lines block v from u
- $u \dashv v$ if v cut by u auto
- probability $1 /(1+\operatorname{index}(u, v))$.
- tree size is (by linearity of E)

$$
n+\sum 1 / i n d e x(u, v) \leq \sum_{u} 2 H_{n}
$$

- result: exists size $O(n \log n)$ auto
- gives randomized construction
- equally important, gives probabilistic existence proof of a small BSP
- so might hope to find deterministically.

