
Randomized Algorithms

Sariel Har-Peled

August 29, 2002

Intro

Quicksort

Items S1, . . . , Sn to be sorted

• suppose could pick middle element:

T (n) = 2T (n/2) + O(n) = O(n log n)

works since divides into much smaller subproblems

• picking middle is hard. But an almost middle element is OK.

• pick random element. “probably” near middle and divides problem in
two

• bound expected number of comparisons C

• Xij = 1 if compare i to j

• linearity of expectation: E[C] =
∑

E[Xij]

• E[Xij] = pij

• Consider smallest recursive call involving both i and j.

• pivot must be one of Si, . . . , Sj. all equally likely

• Si and Sj get compared if pivot is Si or Sj

• probability is at most 2/(j − i + 1) (may have outer elements)

1



• analysis:

n∑
i=1

∑
j>i

pij ≤
n∑

i=1

∑
j>i

2/(j − i + 1)

=
n∑

i=1

n−i+1∑
k=1

2/k

≤ 2
n∑

i=1

n∑
k=1

1/k

≤ 2nHn

(Define Hn, claim O(log n).)

= O(n log n).

• analysis holds for every input, doesn’t assume random input

• we proved expected. can show high probability

• how did we pick a random elements?

• algorithm always works, but might be slow.

BSP

• linearity of expectation.

• Rendering an image

– render a collection of polygons (lines)

– painters algorithm: draw from back to front; let front overwrite

– need to figure out order with respect to user

• define BSP.

– BSP is a data structure that makes order determination easy

– Build in preprocess step, then render fast.

2



– Choose any hyperplane (root of tree), split lines onto correct side
of hyperplane, recurse

– If user is on side 1 of hyperplane, then nothing on side 2 blocks
side 1, so paint it first. Recurse.

– time=BSP size

• sometimes must split to build BSP

• how limit splits?

• autopartitions

• random auto

• analysis

– index (u, v) = k if k lines block v from u

– u a v if v cut by u auto

– probability 1/(1 + index (u, v)).

– tree size is (by linearity of E)

n +
∑

1/index (u, v) ≤
∑

u

2Hn

• result: exists size O(n log n) auto

• gives randomized construction

• equally important, gives probabilistic existence proof of a small
BSP

• so might hope to find deterministically.

3


