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The exposition here is based on [AS00].

1 VC Dimension

Definition 1.1 A range space Sis a pair(X,R), whereX is a (finite or infinite) set andR is a (finite
or infinite) family of subsets ofX. The elements ofX arepointsand the elements ofR areranges.

For A⊆ X, PR(A) =
{

r ∩A
∣∣∣ r ∈ R

}
is theprojectionof RonA.

If PR(A) contains all subsets ofA (i.e., if A is finite, we have|PR(A)|= 2|A|) thenA is shattered
by R.

TheVapnik-Chervonenkisdimension (or VC-dimension) ofS, denoted by VC(S), is the max-
imum cardinality of a shattered subset ofX. It there are arbitrarility large shattered subsets then
VC(S) = ∞.

Let

g(d,n) =
d

∑
i=0

(
n
i

)
.

Note that for alln,d≥ 1, g(d,n) = g(d,n−1)+g(d−1,n−1)

Lemma 1.2 (Sauer’s Lemma)If (X,R) is a range space ofVC-dimension d with|X| = n points
then|R| ≤ g(d,n).

Proof: The claim trivially holds ford = 0 orn = 0.
Let x be any element ofX, and consider the sets

Rx =
{

r \{x}
∣∣∣x∈ r, r ∈ R, r \{x} ∈ R

}
and

R\x =
{

r \{x}
∣∣∣ r ∈ R

}
.

Observe that|R| = |Rx|+ |R\x| (Indeed, ifr does not containx than it is counted inRx, if does
containx but r \x /∈ R, then it is also counted inRx. The only remaining case is when bothr \{x}
andr ∪{x} are inR, but then it is being counted once inRx and once inR\x.)
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Observe thatRx has VC dimensiond−1, as the largest set that can be shattered is of sized−1.
Indeed, any setA⊂ X shattered byRx, implies thatA∪{x} is shattered inR.

Thus,
|R|= |Rx|+ |R\x|= g(n−1,d−1)+g(n−1,d) = g(d,n),

by induction.
By applying Lemma 1.2, to a finite subset ofX, we get:

Corollary 1.3 If (X,R) is a rnage space ofVC-dimension d then for every finitte subset A of X,
we have|PR(A)| ≤ g(d, |A|).

Definition 1.4 Let (X,R) be a range space, and letA be a finite subset ofX. For 0≤ ε≤ 1, a subset
B⊆ A, is anε-samplefor A if for any ranger ∈ R, we have∣∣∣∣ |A∩ r|

|A|
− |B∩ r|

|B|

∣∣∣∣≤ ε.

Similarly, N ⊆ A is anε-net for A, if for any ranger ∈ R, if |r ∩A| ≥ ε |A| implie thatr contains at
least one point ofN (i.e., r ∩N 6= /0).

Theorem 1.5 There is a postive constant c such that if(X,R) is any range space ofVC-dimension
at most d, A⊆X is a finite subset andε,δ > 0, then a random subset B of cardinality s of A wwhere
s is at least the minimum between|A| and

c
ε2

(
d log

d
ε

+ log
1
δ

)
is anε-sample for A with probability at least1−δ.

Theorem 1.6 Let (X,R) be a range space ofVC-dimension d, let A be a finite subset of X and
suppose0 < ε,δ < 1. Let N be a set obtained by m random independent draws from A, where

m≥ max

(
4
ε

log
2
δ
,
8d
ε

log
8d
ε

)
. (1)

Then N is anε-net for A with probablity at least1−δ.

1.1 Proof of Theorem 1.6

Let (X,R) be a range space of VC-dimensiond, and letA be a subset ofX of cardinalityn. Suppose
thatmsatisfiers Equation (1). LetN = (x1, . . . ,xm) be the sample obtained bym independet samples
from A (the elements ofN are not necessarily distinct, and thats why we treat them as ordered set).
Let E1 be the probablity thatN fails to be anε-net. Namely,

E1 =
{
∃r ∈ R

∣∣∣ |r ∩A| ≥ εn, r ∩N = /0
}

.
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(Namely, there exists a “heavy” ranger that does not contain any point ofN.) To complete the
proof, we must show thatPr[E1]≤ δ. Let T = (y1, . . . ,ym) be another random sample generated in
a similar fashion toN. Let E2 be the event thatN fails, butT “works”, formally

E2 =
{
∃r ∈ R

∣∣∣ |r ∩A| ≥ εn, r ∩N = /0, |r ∩T| ≥ εm
2

}
.

(|r ∩T| denotes the number of elements ofT belong tor.)

Intuitively, sinceET

[
|r ∩T|

]
≥ εm, then for the ranger thatN fails for, we have with “good”

probability that|r ∩T| ≥ εn
2 . Namely,E1 andE2 have more or less the same probablity.

Claim 1.7 Pr[E2]≤ Pr[E1]≤ 2Pr[E2].

Proof: Clearly,E2⊆E1, and thusPr[E2]≤Pr[E1]. As for the other part, note thatPr
[
E2

∣∣∣E1

]
=

Pr[E2∩E1]/Pr[E1] = Pr[E2]/Pr[E1]. It is thus enough to show thatPr
[
E2

∣∣∣E1

]
≥ 1/2.

Assume thatE1 occur. There isr ∈ R, such that|r ∩A|> εn andr ∩N = /0. The required prob-
ablity is at least the probablity that for this spacificr, we have|r ∩T| ≥ εn

2 . However,|r ∩T| is a
binomial variable with expectationεm, and varianceε(1−ε)m≤ εm. Thus, by Cheby’s inequality,

Pr
[
|r ∩T|< εm

2

]
≤ Pr

[
||r ∩T|− εm|> εm

2

]
Pr

[
||r ∩T|− εm|>

√
εm
2

√
εm

]
≤ 4

εm
≤ 1

2
,

by Equation (1). Thus,Pr[E2]/Pr[E1] = Pr
[
|r ∩T| ≥ εn

2

]
= 1−Pr

[
|r ∩T|< εm

2

]
≥ 1

2.
Thus, it is enough to bound the probablity ofE2. Let

E′
2 =

{
∃r ∈ R

∣∣∣ r ∩N = /0, |r ∩T| ≥ εm
2

}
,

Clearly,E2 ⊆ E′
2. Thus, bounding the probablity ofE′

2 is enough to prove the theorem. Note how-
ever, that a shocking thing happend! We no longer haveA as participating in our event. Namely,
we turned bounding an event that dependends on a global quantity, into bounding a quantity that
depends only on local quantity/experiment. This is the crucial idea in this proof.

Claim 1.8 Pr[E2]≤ Pr[E′
2]≤ g(d,2m)2−em/2.

Proof: We imagine that we sample the elements ofN∪T together, by pickingZ = (z1, . . . ,z2m)
independetly fromA. Next, we randomly decide themelements ofZ that go intoN, and remaining
elements go intoT. Clearly,

Pr
[
E′

2

]
= ∑

Z
Pr

[
E′

2

∣∣∣Z
]

Pr[Z] .

Thus, from this point on, we fix the setZ, and we boundPr
[
E′

2

∣∣∣Z
]
.

It is now enough to consider the ranges in the projection spacePZ(R). By Lemma 1.2, we have
|PZ(r)| ≤ g(d,2m).

Let us fix anyr ∈ PZ(R), and consider the event

Er =
{
|r ∩T|> εm

2
andr ∩N = /0

}
.
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For p = |r ∩ (N∪T)|, we have

Pr[Er ] ≤ Pr
[
r ∩N = /0

∣∣∣ |r ∩ (N∪T)|> εm
2

]
=

(2m−p
m

)(2m
m

)
=

(2m− p)(2m− p−1) · · ·(m− p+1)
2m(2m−1) · · ·(m+1)

=
m(m−1) · · ·(m− p+1)

2m(2m−1) · · ·(2m− p+1)
≤ 2−p ≤ 2−εm/2.

Thus,
Pr

[
E′

2

∣∣∣Z
]
≤ ∑

r∈PZ(R)
Pr[Er ]≤ |PZ(R)|2−εm/2 = g(d,2m)2−εm/2,

implying thatPr[E′
2]≤ g(d,2m)2−εm/2.

Proof of Theorem 1.6.By Lemma 1.7 and Lemma 1.8, we havePr[E1] ≤ 2g(d,2m)2−εm/2. It
is thus remains to verify that ifmsatisfies Equation (1), then 2g(d,2m)2−εm/2 ≤ δ. One can verify
that this inequality is implied by Equation (1). However, we omit the details, as this is tedious.
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