ε-net and VC-Dimension

497 - Randomized Algorithms

Sariel Har-Peled

November 14, 2002

The exposition here is based on [AS00].

1 VC Dimension

Definition 1.1 A *range space S* is a pair (*X*, *R*), where *X* is a (finite or infinite) set and *R* is a (finite or infinite) family of subsets of *X*. The elements of *X* are *points* and the elements of *R* are *ranges*. For $A \subseteq X$, $P_R(A) = \{r \cap A \mid r \in R\}$ is the *projection* of *R* on *A*.

If $P_R(A)$ contains all subsets of A (i.e., if A is finite, we have $|P_R(A)| = 2^{|A|}$) then A is *shattered* by R.

The *Vapnik-Chervonenkis* dimension (or VC-dimension) of *S*, denoted by VC(*S*), is the maximum cardinality of a shattered subset of *X*. It there are arbitrarility large shattered subsets then $VC(S) = \infty$.

Let

$$g(d,n) = \sum_{i=0}^d \binom{n}{i}.$$

Note that for all $n, d \ge 1$, g(d, n) = g(d, n-1) + g(d-1, n-1)

Lemma 1.2 (Sauer's Lemma) If (X, R) is a range space of VC-dimension d with |X| = n points then $|R| \le g(d, n)$.

Proof: The claim trivially holds for d = 0 or n = 0. Let *x* be any element of *X*, and consider the sets

$$R_x = \left\{ r \setminus \{x\} \mid x \in r, r \in R, r \setminus \{x\} \in R \right\}$$

and

$$R \setminus x = \left\{ r \setminus \{x\} \mid r \in R \right\}.$$

Observe that $|R| = |R_x| + |R \setminus x|$ (Indeed, if *r* does not contain *x* than it is counted in R_x , if does contain *x* but $r \setminus x \notin R$, then it is also counted in R_x . The only remaining case is when both $r \setminus \{x\}$ and $r \cup \{x\}$ are in *R*, but then it is being counted once in R_x and once in $R \setminus x$.)

Observe that R_x has VC dimension d-1, as the largest set that can be shattered is of size d-1. Indeed, any set $A \subset X$ shattered by R_x , implies that $A \cup \{x\}$ is shattered in R.

Thus,

$$|R| = |R_x| + |R \setminus x| = g(n-1, d-1) + g(n-1, d) = g(d, n),$$

by induction.

By applying Lemma 1.2, to a finite subset of *X*, we get:

Corollary 1.3 If (X, R) is a rnage space of VC-dimension d then for every finite subset A of X, we have $|P_R(A)| \le g(d, |A|)$.

Definition 1.4 Let (X, R) be a range space, and let A be a finite subset of X. For $0 \le \varepsilon \le 1$, a subset $B \subseteq A$, is an ε -sample for A if for any range $r \in R$, we have

$$\left|\frac{|A\cap r|}{|A|} - \frac{|B\cap r|}{|B|}\right| \leq \varepsilon.$$

Similarly, $N \subseteq A$ is an ε -*net* for A, if for any range $r \in R$, if $|r \cap A| \ge \varepsilon |A|$ implie that r contains at least one point of N (i.e., $r \cap N \neq \emptyset$).

Theorem 1.5 There is a postive constant c such that if (X, R) is any range space of VC-dimension at most $d, A \subseteq X$ is a finite subset and $\varepsilon, \delta > 0$, then a random subset B of cardinality s of A wwhere s is at least the minimum between |A| and

$$\frac{c}{\varepsilon^2} \left(d\log\frac{d}{\varepsilon} + \log\frac{1}{\delta} \right)$$

is an ε *-sample for* A *with probability at least* $1 - \delta$ *.*

Theorem 1.6 Let (X, R) be a range space of VC-dimension d, let A be a finite subset of X and suppose $0 < \varepsilon, \delta < 1$. Let N be a set obtained by m random independent draws from A, where

$$m \ge \max\left(\frac{4}{\varepsilon}\log\frac{2}{\delta}, \frac{8d}{\varepsilon}\log\frac{8d}{\varepsilon}\right).$$
 (1)

Then N is an ε *-net for A with probablity at least* $1 - \delta$ *.*

1.1 Proof of Theorem 1.6

Let (X, R) be a range space of VC-dimension d, and let A be a subset of X of cardinality n. Suppose that m satisfiers Equation (1). Let $N = (x_1, ..., x_m)$ be the sample obtained by m independet samples from A (the elements of N are not necessarily distinct, and thats why we treat them as ordered set). Let E_1 be the probability that N fails to be an ε -net. Namely,

$$E_1 = \left\{ \exists r \in R \mid |r \cap A| \ge \varepsilon n, r \cap N = \emptyset \right\}.$$

(Namely, there exists a "heavy" range *r* that does not contain any point of *N*.) To complete the proof, we must show that $\mathbf{Pr}[E_1] \leq \delta$. Let $T = (y_1, \dots, y_m)$ be another random sample generated in a similar fashion to *N*. Let E_2 be the event that *N* fails, but *T* "works", formally

$$E_2 = \left\{ \exists r \in R \mid |r \cap A| \ge \varepsilon n, r \cap N = \emptyset, |r \cap T| \ge \frac{\varepsilon m}{2} \right\}.$$

 $(|r \cap T|$ denotes the number of elements of *T* belong to *r*.)

Intuitively, since $E_T\left[|r \cap T|\right] \ge \varepsilon m$, then for the range *r* that *N* fails for, we have with "good" probability that $|r \cap T| \ge \frac{\varepsilon n}{2}$. Namely, E_1 and E_2 have more or less the same probability.

Claim 1.7 $\Pr[E_2] \le \Pr[E_1] \le 2\Pr[E_2].$

Proof: Clearly, $E_2 \subseteq E_1$, and thus $\Pr[E_2] \leq \Pr[E_1]$. As for the other part, note that $\Pr[E_2 | E_1] = \Pr[E_2 \cap E_1] / \Pr[E_1] = \Pr[E_2] / \Pr[E_1]$. It is thus enough to show that $\Pr[E_2 | E_1] \geq 1/2$.

Assume that E_1 occur. There is $r \in R$, such that $|r \cap A| > \varepsilon n$ and $r \cap N = 0$. The required probability is at least the probability that for this spacific r, we have $|r \cap T| \ge \frac{\varepsilon n}{2}$. However, $|r \cap T|$ is a binomial variable with expectation εm , and variance $\varepsilon(1 - \varepsilon)m \le \varepsilon m$. Thus, by Cheby's inequality,

$$\mathbf{Pr}\Big[|r \cap T| < \frac{\varepsilon m}{2}\Big] \le \mathbf{Pr}\Big[||r \cap T| - \varepsilon m| > \frac{\varepsilon m}{2}\Big] \mathbf{Pr}\Big[||r \cap T| - \varepsilon m| > \frac{\sqrt{\varepsilon m}}{2}\sqrt{\varepsilon m}\Big] \le \frac{4}{\varepsilon m} \le \frac{1}{2},$$

by Equation (1). Thus, $\Pr[E_2] / \Pr[E_1] = \Pr[|r \cap T| \ge \frac{\varepsilon n}{2}] = 1 - \Pr[|r \cap T| < \frac{\varepsilon m}{2}] \ge \frac{1}{2}$. Thus, it is enough to bound the probability of E_2 . Let

$$E_2' = \left\{ \exists r \in R \mid r \cap N = \emptyset, |r \cap T| \ge \frac{\varepsilon m}{2} \right\},\$$

Clearly, $E_2 \subseteq E'_2$. Thus, bounding the probability of E'_2 is enough to prove the theorem. Note however, that a shocking thing happend! We no longer have *A* as participating in our event. Namely, we turned bounding an event that dependends on a global quantity, into bounding a quantity that depends only on local quantity/experiment. This is the crucial idea in this proof.

Claim 1.8 $\Pr[E_2] \leq \Pr[E'_2] \leq g(d, 2m)2^{-em/2}$.

Proof: We imagine that we sample the elements of $N \cup T$ together, by picking $Z = (z_1, ..., z_{2m})$ independently from *A*. Next, we randomly decide the *m* elements of *Z* that go into *N*, and remaining elements go into *T*. Clearly,

$$\mathbf{Pr}[E_2'] = \sum_{Z} \mathbf{Pr}[E_2' \mid Z] \mathbf{Pr}[Z]$$

Thus, from this point on, we fix the set Z, and we bound $\Pr\left[E'_2 \mid Z\right]$.

It is now enough to consider the ranges in the projection space $P_Z(R)$. By Lemma 1.2, we have $|P_Z(r)| \le g(d, 2m)$.

Let us fix any $r \in \mathcal{P}_Z(R)$, and consider the event

$$E_r = \left\{ |r \cap T| > \frac{\varepsilon m}{2} \text{ and } r \cap N = \emptyset \right\}.$$

For $p = |r \cap (N \cup T)|$, we have

$$\begin{aligned} \mathbf{Pr}[E_r] &\leq \mathbf{Pr}\Big[r \cap N = \emptyset \ \Big| \ |r \cap (N \cup T)| > \frac{\varepsilon m}{2}\Big] = \frac{\binom{2m-p}{m}}{\binom{2m}{m}} \\ &= \frac{(2m-p)(2m-p-1)\cdots(m-p+1)}{2m(2m-1)\cdots(m+1)} \\ &= \frac{m(m-1)\cdots(m-p+1)}{2m(2m-1)\cdots(2m-p+1)} \leq 2^{-p} \leq 2^{-\varepsilon m/2}. \end{aligned}$$

Thus,

$$\mathbf{Pr}\Big[E_2' \mid Z\Big] \leq \sum_{r \in P_Z(R)} \mathbf{Pr}[E_r] \leq |P_Z(R)| \, 2^{-\varepsilon m/2} = g(d, 2m) 2^{-\varepsilon m/2},$$

implying that $\mathbf{Pr}[E'_2] \leq g(d, 2m)2^{-\varepsilon m/2}$.

*Proof of Theorem 1.6.*By Lemma 1.7 and Lemma 1.8, we have $\Pr[E_1] \leq 2g(d, 2m)2^{-\epsilon m/2}$. It is thus remains to verify that if *m* satisfies Equation (1), then $2g(d, 2m)2^{-\epsilon m/2} \leq \delta$. One can verify that this inequality is implied by Equation (1). However, we omit the details, as this is tedious.

References

[AS00] N. Alon and J. H. Spencer. *The probabilistic method*. Wiley Inter-Science, 2nd edition, 2000.