ε-net and VC-Dimension

497 - Randomized Algorithms
Sariel Har-Peled
November 14, 2002

The exposition here is based on [AS00].

1 VC Dimension

Definition 1.1 A range space S is a pair (X, R), where X is a (finite or infinite) set and R is a (finite or infinite) family of subsets of X. The elements of X are points and the elements of R are ranges. For $A \subseteq X, P_{R}(A)=\{r \cap A \mid r \in R\}$ is the projection of R on A.

If $P_{R}(A)$ contains all subsets of A (i.e., if A is finite, we have $\left|P_{R}(A)\right|=2^{|A|}$) then A is shattered by R.

The Vapnik-Chervonenkis dimension (or VC-dimension) of S, denoted by $\operatorname{VC}(S)$, is the maximum cardinality of a shattered subset of X. It there are arbitrarility large shattered subsets then $\operatorname{VC}(S)=\infty$.

Let

$$
g(d, n)=\sum_{i=0}^{d}\binom{n}{i}
$$

Note that for all $n, d \geq 1, g(d, n)=g(d, n-1)+g(d-1, n-1)$
Lemma 1.2 (Sauer's Lemma) If (X, R) is a range space of VC -dimensiond with $|X|=n$ points then $|R| \leq g(d, n)$.

Proof: The claim trivially holds for $d=0$ or $n=0$.
Let x be any element of X, and consider the sets

$$
R_{x}=\{r \backslash\{x\} \mid x \in r, r \in R, r \backslash\{x\} \in R\}
$$

and

$$
R \backslash x=\{r \backslash\{x\} \mid r \in R\} .
$$

Observe that $|R|=\left|R_{x}\right|+|R \backslash x|$ (Indeed, if r does not contain x than it is counted in R_{x}, if does contain x but $r \backslash x \notin R$, then it is also counted in R_{x}. The only remaining case is when both $r \backslash\{x\}$ and $r \cup\{x\}$ are in R, but then it is being counted once in R_{x} and once in $R \backslash x$.)

Observe that R_{x} has VC dimension $d-1$, as the largest set that can be shattered is of size $d-1$. Indeed, any set $A \subset X$ shattered by R_{x}, implies that $A \cup\{x\}$ is shattered in R.

Thus,

$$
|R|=\left|R_{x}\right|+|R \backslash x|=g(n-1, d-1)+g(n-1, d)=g(d, n),
$$

by induction.
By applying Lemma 1.2 , to a finite subset of X, we get:
Corollary 1.3 If (X, R) is a rnage space of VC -dimension d then for every finitte subset A of X, we have $\left|P_{R}(A)\right| \leq g(d,|A|)$.

Definition 1.4 Let (X, R) be a range space, and let A be a finite subset of X. For $0 \leq \varepsilon \leq 1$, a subset $B \subseteq A$, is an ε-sample for A if for any range $r \in R$, we have

$$
\left|\frac{|A \cap r|}{|A|}-\frac{|B \cap r|}{|B|}\right| \leq \varepsilon
$$

Similarly, $N \subseteq A$ is an ε-net for A, if for any range $r \in R$, if $|r \cap A| \geq \varepsilon|A|$ implie that r contains at least one point of N (i.e., $r \cap N \neq \emptyset$).

Theorem 1.5 There is a postive constant c such that if (X, R) is any range space of VC -dimension at most $d, A \subseteq X$ is a finite subset and $\varepsilon, \delta>0$, then a random subset B of cardinality s of A wwhere s is at least the minimum between $|A|$ and

$$
\frac{c}{\varepsilon^{2}}\left(d \log \frac{d}{\varepsilon}+\log \frac{1}{\delta}\right)
$$

is an ε-sample for A with probability at least $1-\delta$.
Theorem 1.6 Let (X, R) be a range space of VC-dimension d, let A be a finite subset of X and suppose $0<\varepsilon, \delta<1$. Let N be a set obtained by m random independent draws from A, where

$$
\begin{equation*}
m \geq \max \left(\frac{4}{\varepsilon} \log \frac{2}{\delta}, \frac{8 d}{\varepsilon} \log \frac{8 d}{\varepsilon}\right) \tag{1}
\end{equation*}
$$

Then N is an ε-net for A with probablity at least $1-\delta$.

1.1 Proof of Theorem 1.6

Let (X, R) be a range space of VC-dimension d, and let A be a subset of X of cardinality n. Suppose that m satisfiers Equation (1). Let $N=\left(x_{1}, \ldots, x_{m}\right)$ be the sample obtained by m independet samples from A (the elements of N are not necessarily distinct, and thats why we treat them as ordered set). Let E_{1} be the probablity that N fails to be an ε-net. Namely,

$$
E_{1}=\{\exists r \in R| | r \cap A \mid \geq \varepsilon n, r \cap N=\emptyset\} .
$$

(Namely, there exists a "heavy" range r that does not contain any point of N.) To complete the proof, we must show that $\operatorname{Pr}\left[E_{1}\right] \leq \delta$. Let $T=\left(y_{1}, \ldots, y_{m}\right)$ be another random sample generated in a similar fashion to N. Let E_{2} be the event that N fails, but T "works", formally

$$
E_{2}=\left\{\exists r \in R| | r \cap A\left|\geq \varepsilon n, r \cap N=\emptyset,|r \cap T| \geq \frac{\varepsilon m}{2}\right\} .\right.
$$

($|r \cap T|$ denotes the number of elements of T belong to r.)
Intuitively, since $E_{T}[|r \cap T|] \geq \varepsilon m$, then for the range r that N fails for, we have with "good" probability that $|r \cap T| \geq \frac{\varepsilon n}{2}$. Namely, E_{1} and E_{2} have more or less the same probablity.

Claim 1.7 $\operatorname{Pr}\left[E_{2}\right] \leq \operatorname{Pr}\left[E_{1}\right] \leq 2 \operatorname{Pr}\left[E_{2}\right]$.
Proof: Clearly, $E_{2} \subseteq E_{1}$, and thus $\operatorname{Pr}\left[E_{2}\right] \leq \operatorname{Pr}\left[E_{1}\right]$. As for the other part, note that $\operatorname{Pr}\left[E_{2} \mid E_{1}\right]=$ $\operatorname{Pr}\left[E_{2} \cap E_{1}\right] / \operatorname{Pr}\left[E_{1}\right]=\mathbf{P r}\left[E_{2}\right] / \operatorname{Pr}\left[E_{1}\right]$. It is thus enough to show that $\operatorname{Pr}\left[E_{2} \mid E_{1}\right] \geq 1 / 2$.

Assume that E_{1} occur. There is $r \in R$, such that $|r \cap A|>\varepsilon n$ and $r \cap N=\emptyset$. The required probablity is at least the probablity that for this spacific r, we have $|r \cap T| \geq \frac{\varepsilon n}{2}$. However, $|r \cap T|$ is a binomial variable with expectation εm, and variance $\varepsilon(1-\varepsilon) m \leq \varepsilon m$. Thus, by Cheby's inequality,

$$
\operatorname{Pr}\left[|r \cap T|<\frac{\varepsilon m}{2}\right] \leq \mathbf{P r}\left[| | r \cap T|-\varepsilon m|>\frac{\varepsilon m}{2}\right] \mathbf{P r}\left[| | r \cap T|-\varepsilon m|>\frac{\sqrt{\varepsilon m}}{2} \sqrt{\varepsilon m}\right] \leq \frac{4}{\varepsilon m} \leq \frac{1}{2}
$$

by Equation (1). Thus, $\operatorname{Pr}\left[E_{2}\right] / \operatorname{Pr}\left[E_{1}\right]=\mathbf{P r}\left[|r \cap T| \geq \frac{\varepsilon n}{2}\right]=1-\mathbf{P r}\left[|r \cap T|<\frac{\varepsilon m}{2}\right] \geq \frac{1}{2}$.
Thus, it is enough to bound the probablity of E_{2}. Let

$$
E_{2}^{\prime}=\left\{\exists r \in R\left|r \cap N=\emptyset,|r \cap T| \geq \frac{\varepsilon m}{2}\right\},\right.
$$

Clearly, $E_{2} \subseteq E_{2}^{\prime}$. Thus, bounding the probablity of E_{2}^{\prime} is enough to prove the theorem. Note however, that a shocking thing happend! We no longer have A as participating in our event. Namely, we turned bounding an event that dependends on a global quantity, into bounding a quantity that depends only on local quantity/experiment. This is the crucial idea in this proof.

Claim 1.8 $\operatorname{Pr}\left[E_{2}\right] \leq \operatorname{Pr}\left[E_{2}^{\prime}\right] \leq g(d, 2 m) 2^{-e m / 2}$.
Proof: We imagine that we sample the elements of $N \cup T$ together, by picking $Z=\left(z_{1}, \ldots, z_{2 m}\right)$ independetly from A. Next, we randomly decide the m elements of Z that go into N, and remaining elements go into T. Clearly,

$$
\operatorname{Pr}\left[E_{2}^{\prime}\right]=\sum_{Z} \operatorname{Pr}\left[E_{2}^{\prime} \mid Z\right] \operatorname{Pr}[Z] .
$$

Thus, from this point on, we fix the set Z, and we bound $\operatorname{Pr}\left[E_{2}^{\prime} \mid Z\right]$.
It is now enough to consider the ranges in the projection space $P_{Z}(R)$. By Lemma 1.2, we have $\left|P_{Z}(r)\right| \leq g(d, 2 m)$.

Let us fix any $r \in \mathcal{P}_{Z}(R)$, and consider the event

$$
E_{r}=\left\{|r \cap T|>\frac{\varepsilon m}{2} \text { and } r \cap N=\emptyset\right\} .
$$

For $p=|r \cap(N \cup T)|$, we have

$$
\begin{aligned}
\operatorname{Pr}\left[E_{r}\right] & \leq \operatorname{Pr}\left[r \cap N=\emptyset| | r \cap(N \cup T) \left\lvert\,>\frac{\varepsilon m}{2}\right.\right]=\frac{\binom{2 m-p}{m}}{\binom{2 m}{m}} \\
& =\frac{(2 m-p)(2 m-p-1) \cdots(m-p+1)}{2 m(2 m-1) \cdots(m+1)} \\
& =\frac{m(m-1) \cdots(m-p+1)}{2 m(2 m-1) \cdots(2 m-p+1)} \leq 2^{-p} \leq 2^{-\varepsilon m / 2}
\end{aligned}
$$

Thus,

$$
\operatorname{Pr}\left[E_{2}^{\prime} \mid Z\right] \leq \sum_{r \in P_{Z}(R)} \operatorname{Pr}\left[E_{r}\right] \leq\left|P_{Z}(R)\right| 2^{-\varepsilon m / 2}=g(d, 2 m) 2^{-\varepsilon m / 2}
$$

implying that $\mathbf{P r}\left[E_{2}^{\prime}\right] \leq g(d, 2 m) 2^{-\varepsilon m / 2}$.
Proof of Theorem 1.6.By Lemma 1.7 and Lemma 1.8, we have $\operatorname{Pr}\left[E_{1}\right] \leq 2 g(d, 2 m) 2^{-\varepsilon m / 2}$. It is thus remains to verify that if m satisfies Equation (1), then $2 g(d, 2 m) 2^{-\varepsilon m / 2} \leq \delta$. One can verify that this inequality is implied by Equation (1). However, we omit the details, as this is tedious.

References

[AS00] N. Alon and J. H. Spencer. The probabilistic method. Wiley Inter-Science, 2nd edition, 2000.

