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Applications of Random Walks

Optimization is the problem of minimizing some function over some domain: min f(z),z €
S. We will consider convex optimization, the special case when the function and set are

both convex.

Definition 1. A convex set K is a subset of R* such that for any two points in K, the
line connecting the two points is also in K: Vr,y € K,VA,0< A <1, A-z+(1-)A)-y € K.

Definition 2. A convex function is a function that satisfies the inequality f(Ax + (1 —
Ay) < Af(x)+ (1 =A)f(z) forall X:0< A< 1.

A linear program in R” is an optimization problem of the form min(c!z), Az < b, where
A is a m x n matrix and both ¢ and b are vectors. This is clearly a special case in R” of

convex optimization - K is a polyhedron and f is linear.

Convex optimization generalizes many discrete problems as well. An example is Weighted
Perfect Matching in a graph: Given a graph G = (V, E) and a set of edge weights w;;,
find the minimum weight perfect matching. We can frame this as a convex optimization
problem by using a vector, z € {0,1}'® to indicate which edges are used in the matching
M. Defining K to be the convex hull of all such perfect matchings of G, we can state the

problem as: min(w’z),z € K.

There is a problem, because getting a usable description of this convex hull K is not trivial.
However, a result of Edmonds is that the following set of constraints defines the same convex

set:

Vizj'xij =1
Vi, j EV,OS.’E,']' <1
VS CV,|S| is odd

ViES,j¢SaZ$ij21



Separation Oracles

Returning to the problem of solving convex optimizations brings up the question of how to
get a description of f(z) and K. For a function we can use an explicit description but what

about how to describe K7 Consider the the example of Semi-Definite Programming:
min(Co X),4;- X <b,X >0

This signifies that the matrix X is positive semi-definite:

Vy e R%,yTXy >0, or X(yy')>0

Fact 3. For any convez set K, every point y is either in K or there exists some plane which

separates y from K:

Vy € R either y € K or 3a’z = b such that a’y < b Vz € K,a'z > b

A separation oracle can produce either y € K or y ¢ K and a’z = b. To build such
a separation oracle for positive semi-definite matrices, we simply need to check that all
eigenvalues are greater than zero. This gives us an efficient ©(n?) time separation oracle.
This is really a weak separation oracle because the eigenvalues can be approximated to any

desired accuracy, but cannot be calculated exactly since they might be irrational.

It should be noted that it is hopeless to solve every convex optimization problem exactly
since the optimum might be irrational. Instead we aim for getting e-close to the optimum,

in time proportion to log %

1 An algorithm for feasibility

We can reduce convex optimization to the following feasibility problem by using a binary

search on the function value.

Definition 4. The input to the Feastibility Problem is convex set K, a separation oracle

and real values R and r and the output is either a point x € K or “K is empty”.

Theorem 5. Suppose K contains an n-dimensional cube with side r and is itself contained
in a n-dimensional cube with side R. The nlog% is a lower bound on the number of calls

to a separation oracle to solve the Feasibility problem

This problem can be solved using the Ellipsoid method which runs in polynomial-time and

makes ©(n?log £) calls to the oracle.



Here is a different algorithm:

1. P:=acube of size R, z:=0

2. Check if z € K. If so, we are done. Otherwise find a separating plane a’z < b

containing K.
3. P:=Pn{aTz < a2}

4. 7Z = % ZZZ\LI y; where y1,...,yn are random points in P. Loop to step 2.

The idea of selecting the random points y is to approximate the centroid and cut the
current polyhedron through that approximation. Cutting through the exact centroid does
not always cut the polyhedron’s n-dimensional volume in half, as can be demonstrated on

a triangle, however it does cut the volume by a constant factor.

Definition 6. A centroid of a convex body K is defined as: ﬁ(}() fzeK zdx.

Theorem 7. For any convex body K, any cut through its centroid has at least % of the
volume on each side.

Proof of Theorem 7:

To show this, consider the process of symmetrizing the polyhedron. This is accomplished
by constructing an axis perpendicular to the separating cut through the centroid. At each
point along the axis, replace the cross-section of the polyhedron with a (n-1)-dimensional

ball of equal volume, illustrated as follows:

Our claim is that the newly constructed region is also convex. Consider two cross sections
A = {z|a"z = t;} and B := {z|aTz = t,}. Also consider the region C := {z|z =

A+ (1 —XNz,y € A,z € B},ie. C=XA+(1—X)B for some A:0 < X < 1. Since we

defined each cross section as a n-dimensional ball, Vol(A4) = f(n)r"~!. To prove this, we

will use the following lemma, proved by Brunn-Minkowski:



Lemma 8. VA, B conver CR", Vol(A + B)% > Vol(A)% + Vol(B)%

Proof of Lemma 8:

Let A and B be defined as n-dimensional cuboids with sides a,...,a, and by,...,b, re-
spectively. Then A + B will have sides of length at most (a; + b;). From this, we can see
the following:

Vol(A+ B)n = (II(a; + b;))» > (Ta;)» + (IIb;)» = Vol(A)» + Vol(B)n

The proof can be extended to unions of cuboids and then to the general case when we

approximate a convex set by a union of cuboids.

Returning to the proof of Theorem 7, define A’ := AA and B’ := (1 — \)B. Using the above

lemma:

Vol(A' + B')#=1 > Vol(A') 7T + Vol(B')w=1

Vol(AA + (1 — \)B)™T > Vol(AA) T + Vol((1 — \)B) w1
Vol(C)a1 > Vol(AA)#T + Vol((1 — \)B) w1

Since Vol()\A)n%l = (f('n,))\"_lrn_l)ﬁ = /\(f(n)r"_l)ﬁ = /\VOZ(A)ﬁ, we arrive at:
Vol(C)aT > AVol(A)™T + (1 — \)Vol(B)1

This means that the process of symmetrization maintains convexity.

To lower bound the volume on one of the sides of the cut, we replace a half of K with a
n-dimensional cone and the other half with a truncated cone equal to the original volume.
In class, this was accomplished in two parts: the “right” half is a cone tapering down from

the original cut radius and the “left” half is a truncated cone. This is illustrated as follows:

\

This process only moves the center of gravity to the right and so the new right “half” is at

most the old right “half” in volume. Thus we can focus on the new convex body, name a

cone.



First, we will find the centroid z of the cone of base radius R and height h:

1 h n— _ nf(n) h o (tR\™! _ nh

Using the centroid z, we can lower bound the volume of one of the halves and can show
that Theorem 7 holds:

nh

Vol(half K) = ;"™ f(n)((E)"tdt = 22(:2)" > Vol(K) (1 — 727)" > £ - Vol(K)




