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1 Markov Chains

A random walk is a Markov chain. As before, we have a state space Ω. We
also have a set of subsets A of Ω that form a σ-algebra, i.e., A is closed
under complements and countable unions. It is an immediate consequence
that A is closed under countable intersections and that ∅,Ω ∈ A. For any
u ∈ Ω and A ∈ A, we have the one-step probability, Pu(A), which tells us
the probability of being in A after taking one step from u. Lastly, we have a
starting distribution Q0 on Ω, which gives us a probability Q0(A) of starting
in the set A ∈ A.

With this setup, a Markov chain is a sequence of points w0, w1, w2, . . .
such that P(w0 ∈ A) = Q0(A) and

P(wi+1 ∈ A | w0 = u0, . . . , wi = ui) = P(wi+1 ∈ A | wi = ui) = Pui(A),

for any A ∈ A. A distribution Q is called stationary if, for all A ∈ A,

Q(A) =
∫

u∈Ω
Pu(A) dQ(u).

In other words, Q is stationary if the probability of being in A is the same
after one step. We also have a generalized version of the symmetry we saw
above in the transition probabilities (pxy = pyx). The Markov chain is called
time-reversible if, for all A,B ∈ A,

P(wi+1 ∈ B | wi ∈ A) = P(wi+1 ∈ A | wi ∈ B).

2 Ball Walk

The following algorithm, called Ball-Walk, is a continuous random walk. In
this case, the set corresponding to the neighborhood of x is Bδ(x) = x+δBn.

Algorithm Ball-Walk(δ):

1. Let x be a starting point in K.

2. Repeat sufficiently many times:

– Choose a random y ∈ Bδ(x).

– If y ∈ K, set x = y.
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Here, the state space is all of the set, so Ω = K. The σ-algebra is the
measurable subsets of K, as is usual. We can define a density function for
the probability of transitioning from u ∈ K to v, provided that u #= v:

p(u, v) =

{
1

Vol(δBn) if v ∈ K ∩ Bδ(u),
0 otherwise.

The probability of staying at u is

Pu(u) = 1 − Vol(K ∩ Bδ(u))
Vol(δBn)

.

Putting these together, the probability of transitioning from u to any mea-
surable subset A is

Pu(A) =

{
Vol(A∩K∩Bδ(u))

Vol(δBn) + Pu(u) if u ∈ A
Vol(A∩K∩Bδ(u))

Vol(δBn) if u /∈ A.

Since the density function is symmetric, it is easy to see that the uniform
distribution is stationary. We can also verify this directly. We can compute
the probability of being in A after one step by adding up the probability that
we transition to u for each u ∈ A. Thus, after one step from the uniform
distribution dQ(u) = 1

Vol(K) du, the probability of being in A is

∫
u∈A Pu(u) dQ(u) +

∫
u∈A

∫
v∈K∩Bδ(u)\{u}

1
Vol(δBn) dQ(v) du

=
∫
u∈A

(
1 − Vol(K∩Bδ(u))

Vol(δBn)

)
dQ(u) +

∫
u∈A

∫
v∈K∩Bδ(u)

1
Vol(δBn) dQ(v) du

=
∫
u∈A dQ(u) + 1

Vol(δBn)

∫
u∈A

(∫
v∈K∩Bδ(u) dv − Vol(K ∩ Bδ(u)

)
dQ(u)

=
∫
u∈A dQ(u)

= Q(A)

Another way to look at the one-step probability distributions is in terms
of flow. For any subset A ∈ A, the ergodic flow Φ(A) is the probability of
transitioning from A to Ω \ A, i.e.,

Φ(A) =
∫

u∈A
Pu(Ω \ A) dQ.

Intuitively, in a stationary distribution, we should have Φ(A) = Φ(Ω \ A).
In fact, this is a characterization of the stationary distribution.
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Theorem 1. A distribution Q is stationary iff Φ(A) = Φ(Ω \ A) for all
A ∈ A.

Proof. Consider their difference

Φ(A) − Φ(Ω \ A) =
∫
u∈A Pu(Ω \ A) dQ(u) −

∫
u/∈A Pu(A) dQ(u)

=
∫
u∈A(1 − Pu(A)) dQ(u) −

∫
u/∈A Pu(A) dQ(u)

= Q(A) −
∫
u∈Ω Pu(A) dQ(u).

The latter quantity is the probability of staying in A after one step, so
Φ(A) − Φ(Ω \ A) = 0 iff Q is stationary.

Now, let’s return to the question of how quickly (and whether) this ran-
dom walk converges to the stationary distribution. As before, it is convenient
to make the walk lazy by giving probability 1

2 of staying in place instead
of taking a step. This means that Pu({u}) ≥ 1

2 and, more generally, for
any A ∈ A, Pu(A) ≥ 1

2 if u ∈ A and Pu(A) < 1
2 if u /∈ A. Also as before,

the notion of conductance will be useful. In this general context, we define
conductance as

φ = min
A∈A, Q(A)≤ 1

2

Φ(A)
Q(A)

,

where Q is the stationary distribution. This is the probability of transition-
ing to Ω \ A given that we are starting in A.

We must also generalize the notion of the distance of a distribution from
stationary. The straightforward generalization of our previous definition is

|Qt − Q| =
1
2

∫

u∈Ω
|dQt(u) − dQ(u)|

=
1
2

∫

u∈Q+
t

dQt(u) − dQ(u) +
1
2

∫

u∈Q−
t

dQ(u) − dQt(u),

where

Q+
t = {u ∈ Ω | dQt(u) ≥ dQ(u)}, and

Q−
t = {u ∈ Ω | dQt(u) < dQ(u)}.

Since we know that

1 =
∫

u∈Q+
t

dQt(u) +
∫

u∈Q−
t

dQt(u) =
∫

u∈Q+
t

dQ(u) +
∫

u∈Q−
t

dQ(u),
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we can rearrange to get
∫

u∈Q+
t

dQt(u) −
∫

u∈Q+
t

dQ(u) =
∫

u∈Q−
t

dQ(u) −
∫

u∈Q−
t

dQt(u),

which shows that the two terms from above are equal. Therefore, we can
just as well define

|Qt − Q| =
∫

u∈Q+
t

dQt(u) − dQ(u) = sup
A∈A

Qt(A) − Q(A).

We will take this as our definition of the distance d(Qt, Q) between distri-
butions Qt and Q.

We would like to know how large t must be before d(Qt, Q) ≤ 1
2d(Q0, Q).

This is one definition of the mixing time. It would be nice to get a bound by
showing that Qt(A)−Q(A) drops quickly for every A. This is not the case.
Instead, we can look at supQ(A)=x Qt(A) − Q(A) for each fixed x ∈ [0, 1].
A bound for every x would imply the bound we need. To prove a bound
on this by induction, we will define it in a formally weaker way. Our upper
bound is

ht(x) = sup
g∈Fx

∫

u∈Ω
g(u) (dQt(u) − dQ(u)) = sup

g∈Fx

∫

u∈Ω
g(u) dQt(u) − x,

where Fx is the set of functions

Fx =
{

g : Ω→ [0, 1] :
∫

u∈Ω
g(u) dQ(u) = x

}
.

It is clear that ht(x) is an upper bound on supQ(A)=x Qt(A) −Q(A) since g
could be the characteristic of A. The following lemma shows that these two
quantities are in fact equal as long as Q is atom-free, i.e., there is no x ∈ Ω
such that Q({x}) > 0.

Lemma 2. If Q is atom-free, then ht(x) = supQ(A)=x Qt(A) − Q(A).

Proof (Sketch). Consider the set of points X that maximize dQt/dQ, their
value density. (This part would not be possible of Q had an atom.) Put
g(x) = 1 for all x ∈ X. These points give the maximum payoff per unit of
weight from g, so it is optimal to put as much weight on them as possible.
Now, find the set of maximizing points in Ω \ X. Set g(x) = 1 at these
points. Continue until the set of points with g(x) = 1 has measure x.
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In fact, this argument shows that when Q is atom-free, we can find a
set A that achieves the supremum. When Q has atoms, we can include
the high value atoms and use this procedure on the non-atom subset of Ω;
however, we made to include a fraction of one atom to achieve the supremum.
This shows that ht(x) can be achieved by a function g that is 0 − 1 valued
everywhere except for at most one point.

Another important fact about ht is the following.

Lemma 3. The function ht is concave.

Proof. Let g1 ∈ Fx and g2 ∈ Fy. Then, we can see that αg1 + (1 − α)g2 ∈
Fαx+(1−α)y , which implies that

ht(αx + (1 − α)y)

≥
∫

u∈Ω
αg1(u) + (1 − α)g2(u) dQt(u) − (αx + (1 − α)y)

= α(
∫

u∈Ω
g1(u) dQt(u) − x) + (1 − α)(

∫

u∈Ω
g2(u) dQt(u) − y).

Since this holds for any such g1 and g2, it must hold if we take the sup, which
gives us ht(αx+ (1−α)y) ≥ αht(x)+ (1−α)ht(y). Thus, ht is concave.

Now, we come to the main lemma relating ht to ht−1. This will allow us
to put a bound on d(Qt, Q).

Lemma 4. Let Q be atom-free, and y = min{x, 1 − x}. Then

ht(x) ≤ 1
2
ht−1(x − 2φy) +

1
2
ht−1(x + 2φy).

Proof. Assume that y = x, i.e., x ≤ 1
2 . The other part is similar. We will

construct two functions, g1 and g2, and use these to bound ht(x). Let A ∈ A
be a subset to be chosen later with Q(A) = x. Let

g1(u) =

{
2Pu(A) − 1 if u ∈ A,

0 if u /∈ A,
and g2(u) =

{
1 if u ∈ A,

2Pu(A) if u /∈ A.

First, note that (1
2g1 + 1

2g2)(u) = Pu(A) for all u ∈ Ω, which means that

1
2

∫

u∈Ω
g1(u) dQt−1(u) +

1
2

∫

u∈Ω
g2(u) dQt−1(u)

=
∫

u∈Ω
(
1
2
g1(u) +

1
2
g2(u)) dQt−1(u)

=
∫

u∈Ω
Pu(A) dQt−1(u)

= Qt(A)
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On the other hand,

1
2

∫

u∈Ω
g1(u) dQ(u) +

1
2

∫

u∈Ω
g2(u) dQ(u) =

∫

u∈Ω
Pu(A) dQ(u) = Q(A)

since Q is stationary. Hence (1
2g1 + 1

2g2) ∈ Fx.Putting these together, we
have

1
2

∫

u∈Ω
g1(u) (dQt−1(u) − dQ(u)) +

1
2

∫

u∈Ω
g2(u) (dQt−1(u) − dQ(u))

= Qt(A) − Q(A).

Since Q is atom-free, there is a subset A ⊆ Ω such that

ht(x) = Qt(A) − Q(A)

=
1
2

∫

u∈Ω
g1(u) (dQt−1(u) − dQ(u)) +

1
2

∫

u∈Ω
g2(u) (dQt−1(u) − dQ(u))

≤ 1
2
ht−1(x1) +

1
2
ht−1(x2),

where x1 =
∫
u∈Ω g1(u) dQ(u) and x2 =

∫
u∈Ω g2(u) dQ(u). Now, we know

that 1
2x1 + 1

2x2 = x. Specifically, we can see that

x1 =
∫

u∈Ω
g1(u) dQ(u)

= 2
∫

u∈A
Pu(A) dQ(u) −

∫

u∈A
dQ(u)

= 2
∫

u∈A
(1 − Pu(Ω \ A)) dQ(u) − x

= x − 2
∫

u∈A
Pu(Ω \ A) dQ(u)

= x − 2Φ(A)
≤ x − 2φx

= x(1 − 2φ).

This implies that x2 ≥ x(1 + 2φ). Since ht−1 is concave, the chord from
x1 to x2 on ht−1 lies below the chord from x(1 − 2φ) to x(1 + 2φ). (See
Figure 1.) Therefore, ht(x) ≤ 1

2ht−1(x(1 − 2φ)) + 1
2ht−1(x(1 + 2φ)).
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Corollary 6. If M = supA∈A Q0(A)/Q(A), then we have

d(Qt, Q) ≤
√

M(1 − 1
2φ2)t.

Proof. By the definition of M , we know that

h0(x) ≤ min{Mx, 1} − x ≤ min{Mx, 1}.

Next, we will show that min{Mx, 1} ≤
√

Mx. If Mx = min{Mx, 1}, then
Mx ≤ 1, which implies that Mx ≤

√
Mx. If 1 = min{Mx, 1}, then 1 ≤ Mx,

which implies that 1 ≤
√

Mx ≤ Mx. So we have shown that

h0(x) ≤ min{Mx, 1} ≤
√

Mx.

Thus, by the last theorem, we know that

d(Qt, Q) ≤ max
x

ht(x) ≤
√

M(1 − 1
2φ2)t.
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