1 Shor’s Factoring Algorithm

Recall from the previous lecture that to find a nontrivial factor of N, it
suffices to find a nontrivial square root of 1 mod N. With probability at
least 1/2, 2"/? is a nontrivial square root, where z is chosen randomly from
Z% and r is its order. Hence, we have reduced the problem of factoring to
the problem of computing the order of a randomly chosen z.

1.1 Simplified Case

We begin with the case in which we do our Fourier transforms over Z, and
we happen to have r | ¢. This is a totally unreasonable assumption, but the
analysis here helps in understanding the general case.
Given x, N, and ¢ (which we suppress in the following), the algorithm is
as follows:
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“Measure” the latter quantity (or actually, invoke the principle of safe stor-
age). We will observe some y = #* mod N, and the state will collapse into a
superposition over all @ such that #* = y. That is, we will be left with
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At this point, we have a uniform superposition over a coset of (r). Hence,
when we apply another Fourier transform over Z,, we get a uniform superpo-

sition over (g/r), regardless of which coset we started in. Now when we make
a measurement, we get a random multiple of ¢/r, and with high probability,
when we take ged(lq/r, q), we get q/r.



1.2 General Case

In the general case, after applying the first measurement, we get

1 la/r]-1

i+ k).
] =

This is no longer a coset of a subgroup in Z,, so the earlier reasoning does not
apply. Nevertheless, we will take a Fourier transform over Z, anyway, and we
will show that we get constructive interference primarily at points close to
multiples of ¢/r. In fact, we will be close enough to essentially “round” to the

nearest multiple, and this will allow us to calculate r with some reasonable
probability.

In what follows, we drop the floors, since it doesn’t make much difference
for the calculations we will be making.

Applying a Fourier transform over Z, to the expression above, we get

q—1
>_acle),
c=0

where
1t

S

q/r—1
_ = & grtk)e ke r ( rc)j
c = w = W w .
Va4 =5 Jq)r q JZ:;)

(w here is a primitive gth root of unity, ¢*7/4.)
Notice that if re is small mod ¢, the terms in the sum cover only a small
angle in the complex plane, and hence, the magnitude of the sum is almost
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the sum of the magnitudes. In particular, consider values of ¢ such that
—r/2 <rcmod ¢ < r/2, so that the terms of the sum cover less than half of
the unit circle. Then at least half of the terms make less than a 45° angle with
the vector sum and each of these contributes at least 1/1/2 of its magnitude
to the sum. Hence, for all such ¢, we have |a.| > (q/r)(1/2v2)(\/7/q) =
(1/2v/2)(1//7). Upon measurement, each such ¢ is observed with probability
at least 1/8r; hence, with constant probability, we will observe some such c.

Consider how this compares to the simplified case. In that case, for values
of ¢ which are multiples of ¢/r, that is, for which r¢ mod ¢ = 0, each term
in the sum is 1, so we get complete constructive interference. On the other
hand, for any other value of ¢ = lg/r + k, the terms in the sum, w’’*, are



evenly spread around the unit circle and completely cancel out. Thus, in the
simplified case, we are left with exactly the multiples of ¢/r.

As an example of the more general case, consider the situation with N =
15 and @ = 2 (so that r = 4), with ¢ = 17. We perform a Fourier transform
over Zy; to get a uniform superposition over values mod 17, and then calculate
2% mod 15 for all values of @ mod 17. This gives us
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When we measure x, we collapse to a state which contains every fourth
value of a. For example, measuring =* = 2 results in the state

S+ 15) +19) +13)).

Now we do a Fourier transform again. Consider the value of ay3 after the
transform, where we have r¢ = 4(13) = 1 mod 17.
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Hence, we get primarily constructive interference, and the probability of

measuring ¢ = 13 will be high. Note that 13 is very close to 3¢/r = 12.75.
The other a’s with large magnitudes will be similarly close to multiples of

q/r.
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1.3 Finishing Up

After making our measurement of ¢, we have a value that, with non-negligible
probability, satisfies —r/2 < remod g < r/2. The problem now is to find
the value of r.

We have for some value [ that |cr — lg| < r/2. Rewriting, we get |¢/q —
[/r| < 1/2q. The fraction ¢/q is known to us. Furthermore, with high
probability, [ will be relatively prime to r, so it suffices to compute [/r in
lowest terms. Since we are free to choose ¢, we need only choose ¢ to be large
enough so that there is a unique fraction [/r which is that close to ¢/q.

Note that » < NV, since it is the order of an element mod N. Furthermore,
notice that two fractions whose denominators are no greater than N differ
by at least 1/N?. Hence, if we choose ¢ > N?, there will be a unique fraction
[/r satisfying the inequality above with r < N.
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Finally, to calculate {/r, we simply compute the continued fraction ex-
pansion of ¢/q, stopping at the largest denominator smaller than N. By the
properties of continued fraction expansions, this always gives us the closest
approximation to ¢/¢ with denominator smaller than N, which is precisely
the value we are looking for.



