E. Servan-Schreiber

lecture05 September 16, 1997 vazirani Class #5
September 16

Quantum Simulations of a Probabilistic Circuit

1 Fourier Basis

The state of an n qubit is described by a unit vector in C2". A particularly convenient (or-
thonormal) basis for this space is the computational basis, in which there is a basis vector for
every classical configuration of the system. We shall label these basis vectors with n bit strings
or whenever convenient with elements of Z7. Thus the state may be written as }° ¢ 1 13» @z |2).

There is another natural basis for the space — the Fourier basis, also called the parity basis.
These basis vectors are also labeled by elements of Z7. Thus for u € Z3:

) = 3 (1)

wEZ;

where x -u is shorthand for), z;u;. Notice that if we measure the state of the system when
it is in any of the fourier basis states |y,), we get each z € Z5 with equal probability, since the
magnitude of the 2" component is 27}/2 independent of . Thus in the Fourier basis vectors all
the information resides in the phase, which is + — 1. In €2, the parity basis is the now familiar

result of the one bit Hadamard gate (see figure 1).

210) + 1))
- [0)
L0y — 1))

Figure 1: The Fourier Basis in C2

It is easy to verify that the Fourier basis vectors are indeed orthonormal (with respect to
the inner-product implicit in the computational basis). To check orthogonality, write the dot
product

) = 3 (D71

wEZ;

If u # v, there is a position j such that u; # v;. Assume u; = 0. Now, if we pair up the
elements of 73 that differ only in the 5™ bit, both elements of the pair have the same phase in
|Xw), but have opposite phase in |x,). Therefore the product (—1)*%(—1)*" is 1 for one element
of the pair and —1 for the other element. Therefore each pair in the partition contributes 0 to
the above sum, and so the dot product is 0.

lecture05 September 16, 1997

One way to picture the Fourier basis is by identifying Z§ with the vertices of the boolean
n dimensional cube (see figure 2). Now a vector in @ € C?" is a function on the vertices of the
cube, which assigns the number «, to vertex x. The computational basis or the assignment
basis consists of delta functions - functions that assign the value 1 to exactly one vertex of the
cube and 0 to all others. The fourier basis vector |yo) assigns value # to all the vertices of
the hypercube. Each w # 0 defines a subcube consisting of half the vertices of the cube —

those which have an even number of 1’s in the positions picked out by u (positions j such that
1

u; = 1). The fourier basis vector |y,) assigns value this subcube, and value =1 to the

on/2 on/2
rest of the vertices in the hypercube.
|100) |101)
|0g |00
|111)
|010) o11)

Figure 2: A 3-dimensional hypercube

The fourier transform over ZJ is the linear transform that maps the computational ba-
sis vector |u) to the fourier basis vector |x,). The circuit to perform this transformation is
particularly simple: run each bit of the input through a Hadamard gate.

2 Simulating a Probabilistic Circuit

A probabilistic circuit is a circuit which takes its input along with a set of random bits and
outputs the correct answer with high probability. (see figure 3).

Our objective is to simulate this behavior with a quantum circuit.

Now that we know how to replace deterministic circuits with quantum circuits, the only
problem we must resolve is how we can pick a uniformly random string to feed in the circuit.

One way to do that is easy: suppose we need m random bits, just feed the [0™) vector to a
Hadamard gate of m inputs (referred to as H,,), we will get the following superposition:

1
> Sl

ReZy'

This superposes all the vectors of Z5* evenly. If we measure that, we will get any particular R
with probability 2%,1 which is the uniform distribution over all m bit vectors, i.e. what we want
(see figure 4).

lecture05 September 16, 1997

Input String X

Output
(correct w.h.p.)

Random String R

A
=
JHI

Figure 3: A generic probabilistic circuit

=
LA

)

=

R 07) H,,

Measure Measure

Figure 4: Measuring early is equivalent to generating a random string

lecture05 September 16, 1997

3 Delaying measurement

But what if we wanted to wait until the end of the computation before doing any measurement.
Is there a way we can set things up so that, given the quantum circuit M, which performs
the computation, we can be certain that waiting until the end to measure will not make any
difference.

"= H = H=

Figure 5: A quantum circuit where measuring before the end makes a difference

It is fair to ask what kind of problem could occur. The following example will make that
clear. Consider the circuit in figure 5: two Hadamard circuits on m bits following each other.

case 1 If we measure just before the second Hadamard gate, we will observe some m-bit string
R with probability 2%,1 Then the output of the second gate will be the superposition

Rx
erzgn (;}n—)p|x> If we measure now, we will observe any given m-bit string with prob-

ability 2%,1 .

case 2 If, on the other hand, we only make one measurement at the end, after the second
Hadamard gate, then since H,, is its own inverse, the output superposition will be exactly
what we started with, namely the |0™) vector, which will measure to the 0 vector with
probability 1.

The point of this example is to show that a uniform superposition of all the m-bit vectors
cannot simply be thought of as a random string. It is only “random” in the computational
basis, but in the Fourier basis it is one of the basis vectors.

So the problem still stands: what can we do to make sure that no matter what the circuit
M, does, if we make no measurement until the end, the behavior will be exactly the same as
the original probabilistic circuit.

4 Copying the random bits

We can use a simple trick which consists of “copying” the random bits on a separate set of
wires and promising that the circuit M, will not touch them at all (see figure 6). At this point
it is fair to ask why this should make any difference at all? What if the M, is the Hadamard
gate on m bits again, why is this not going to be a problem? Why indeed...

The major difference is that by adding another set of m bits which we entangle with our
original m bits, we are now working in a much larger space (©22m as opposed to C2"), and
whatever we do the first set of m bits, their configurations cannot interfere anymore. To
interfere the whole 2m-bit configurations have to match. But if we agree beforehand that we

4

lecture05 September 16, 1997

will not touch the “copy” set of bits, that cannot happen. In a sense, by performing this copy,
we created enough dimensions so that each m-bit string can now roam in its own orthogonal
subspace of 2™ dimensions. Within this subspace, it can assume any superposition of it wishes
without interfering with the original superposition.

s

Mq Output

pe
B
&
|0) & Random String
...... 1
&

Measure

Figure 6: Copying the bits avoids the intermediate measurement

Note that the only important promise here is that M, will not touch the second set of bits.
But we may perform any operations we wish on that set.
Let us examine all this with a 1-bit example: Here m =1 and M, = H,.

case 1 No copying. The uniform superposition of |0) and |1) is fed into Hy. As before, the
output is just |0), not random at all.

case2 We make a copy of the entering qubit. The superposition is now %(|00> + |11)). Now

if we let the first bit go through the Hadamard gate and do nothing to the second one,
the result becomes:
1

V2

Each vector has equal norm so we will observe, after measuring, each vector with proba-
bility 1/4, and in particular the first bit will be perfectly random.

(H & 1)(—=(100) + 1)) = 5 (100} +10)) + (01) ~ [11))

lecture05 September 16, 1997

case 3 Now let us see what happens if we also make the copy bit go through a Hadamard gate.
Will it affect the randomness of the output?

1 1 1 1

(HSH)(5 (00)+11))) = 237 (0+D)@0+IN)+ 57 (10 - 1)@(0)=11)) = =5 (00)+]11)

The randomness of the first bit remains intact.

Let us look again at this phenomenon in QTM notation. Let us call Uy, the unitary
transformation performed by the circuit M, and U, the (arbitrary) unitary transformation
performed on the copy bits.

1 1
S 2 IBIR2) = s S U@ U, (|R)|R, 2))
ReZy R

1
= Snz %: Uc|R) @ Un, | R, @)

What this means is that when we perform a measurement at the end of the computation,
we will observe with probability zim for any fixed m-bit string R the output U.|R), Ung,|ZR).
That is exactly what we want! It is equivalent to saying that the circuit M, is run with any
particular string R with probability 2%,1

5 Summary

In this lecture, we saw how to simulate any probabilistic circuit with a quantum circuit in two
different ways. The first (easy) way is to create a uniform superposition of all the random
strings and make a measurement before feeding it to the circuit. The second (interesting) way
allows all measurements to be delayed until the end of the computation. To insure that the
circuit will not interfere with the uniform superposition of the random strings, you must make
a copy of the qubits and promise that the copied qubits will not be touched by the original
circuit.

