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Abstract

This paper describes work on the computational complexity of various movement plan-
ning problems relevant to robotics. This paper is intended only as a survey of previous and
current work in this area. The generalized mover’s problem is to plan a sequence of move-
ments of linked polyhedra through 3-dimensional Euclidean space, avoiding contact with a
fixed set of polyhedra obstacles. We discuss our and other researchers’ work showing gener-
alized mover’s problems are polynomial space hard. These results provide strong evidence
that robot movement planning is computationally intractable, i.e., any algorithm requires
time growing exponentially with the number of degrees of freedom. We also briefly discuss
the computational complexity of four other quite different types of movement problems: (1)
movement planning in the presence of friction, (2) minimal movement planning, (3) dynamic
movement planning with moving obstacles and (4) adaptive movement planning problems,

1. Introduction: The Mover’s Problem

The classical mover’s problem in d-dimensional Euclidean space is:

Input: (O, P,pr,pr) where O is a set of polyhedral obstacles fixed in Euclidean space and P
is a rigid polyhedron with distinguished initial position p; and final position pr. The inputs
are assumed to be specified by systems of rational linear inequalities.

Problem: Can P be moved by a sequence of translations and rotations for py to pp without
contacting any obstacle in 07

For example, P might be a sofa! which we wish to move through a room crowded with
obstacles. Figure 1 gives a simple example of a two-dimensional mover’s probiem.

The mover’s problem may be generalized to allow P (the object to be moved) to consist
of multiple polyhedra freely linked together at various distinguished vertices. (A typical
example is a robot arm with multiple joints.) Again, the input is specified by systems of
rational linear inequalities. .

The paper is organized as follows: Section 2 concerns lower bounds for generalized mover’s
problems in 2D and 3D. Section 3 concerns efficient solution of restricted mover’s problems.
Section 4 concludes the paper with discussion of further problems in computational robotics.

2. Lower Bounds for Generalized Mover’s Problems

In [1] (also appearing in [2]) we proved that the generalized mover’s problem in three dimen-
sions is polynomial space hard. That is, we proved that the generalized mover’s problem
is at least as hard as any computational problem requiring polynomial space. (Polynomial
space problems are at least as hard as the well known NP problems; see (3].)

YThe author first realized the nontrivial mathematical nature of this problem when he had to plan the
physical movement of an antique sofa from Rochester to C:: e,



This was the first paper investigating the inherent computational complexity of a robotics
problem in Computational Geometry. Our proof technique is to use the degrees of freedom
of P to encode the configuration of a polynomial space bounded Turing machine M, and to
design obstacles which forced the movement of P to simulate the computation of M.

This work was originally motivated by application to robotics: the author felt it was
important to examine computational complezity issues in robots given the recent develop-
ment of mechanical devices autonomously controlled by micro and minicomputers, and the
swiftly increasing computational power of these controllers. However, it took a number of
years before computational complexity issues in robotics became of more general interest.
Recently there have been a flurry of papers in the now emerging area which we might term
Computational Robotics.

Recent investigations in lower bounds have provided some quite ingenious lower bound
constructions for restricted cases of the generalized mover’s problem. For example, [4] showed
that the generalized mover’s problem in three dimensions is also polynomial space hard, and
[5] showed that the problem of moving a collection of disconnected polyhedra in a two-
dimensional maze is polynomial space hard. The problem of moving a collection of disks
in two dimensions is known to be NP-hard (6], but it remains open to show this problem
polynomial space hard.

3. Upper Bounds for Mover’s Problems

Our lower bounds for the generalized mover’s problem provided evidence that time bounds
for algorithms for movement planning must grow exponentially with the number of degrees
of freedom. We next give a brief description of known algorithms for mover’s problems. In
our original paper [1] we also sketched a method for efficient solution of the classic mover’s
problem where P, the object to be moved, is rigid. In spite of considerable work on this
problem by workers in the robotics fields and in artificial intelligence (for example [7-11]), no
algorithm guaranteed to run in polynomial time had previously appeared. Our approach was
to transform a classic mover’s problem (O, P, py, pr) of size n in d dimensions to an apparently
simpler mover’s problem (O', P, p}, p};) of dimensions d’, where P’ is a single part and d'
is the number of degrees of freedom of movement in the original problem. The transformed
problem is thus to find a path in d’-dimensional space avoiding the transformed obstacles O.
The fundamental difficulty is that the induced obstacles may be nonlinear constraints. (In
[11], Lozano-Pérez and Wesley did not construct O’, but instead approximated the induced
obstacles O’ by linear constraints. Unfortunately, an exponential number of linear constraints
were required to approximate even a quadratic constraint within accuracy 27". Thus their
method required exponential time (i.e., 2°® time for some ¢ > 0) even if the original mover’s
problem was two-dimensional.)

Example. Consider a classical mover’s problem (O, P, pr, pr) restricted to dimension d = 2,
with the obstacles O consisting of a set of line segments and P a single polygon. A position
of P can be specified by a triple (z,y, ) where (z,y) are the Cartesian coordinates of some
fixed vertex of P and 4 is the angle of rotation around this vertex. We define a mapping f
from the position of P to 3-space. Let f(z,y,0) = (2/,v/,2') where y = 2/, tan(8) = 2'/v,
and z = (2')2 + (¥')? — «, for some sufficiently large constant o > 0. (o may be taken as the
diameter of a circle enclosing P.) See Figure 3.

In this case, we define a 1-contact set to be a maximal set of positions of P where a
vertex of P contacts a line segment of O, or a vertex of O contacts a line segment of P. (See
Figure 4.) The transformed obstacles O’ are the union of these 1-contact sets. Thus each
obstacle in O’ is a quadratic surface patch which may be easily constructed from the input,
there are at most O(|O||P|) such obstacles and their O(|O|?|P|?) intersections can easily be
computed within accuracy 2" ° for any ¢ > 0, by known polynomial time procedures [12]
for intersection of quadratic surface patches. Hence in this simple example the connected
regions bounded by O’ can be explicitly constructed in polynomial time within accuracy
2-"° which is sufficient for solution of this mover’s problem.



In the case of a classical mover’s problem (O, P,p;, pr) of dimension d = 3, the trans-
formed problem (O', P!, p},pF) has dimension d' = 6. In this case we define a I-contact set
to be a maximal set of positions of P where an edge of P contacts a face of O or an edge
of O contacts a face of P. Again, the l-contact sets are constant degree polynomial. The
transformed obstacles O’ are the union of the 1-contact sets. The connected regions defined
by O’ can again be explicitly constructed by intersecting these constraints. In [1], we briefly
suggested a method for this construction, but the full credit should be given to [13] who
later gave a complete detailed description of a method for explicit construction of such a
transformed mover’s problem in 3 dimensions in polynomial time. (In [14] O’Dunlaing et al.
further improved this construction by observing that movement of P can be restricted to be
equidistant from the obstacles.)

This approach was extended in [15] to solve any generalized mover’s problem of input size
n with d’ degrees of freedom in time n2°), They make use of the algebraic decomposition
of [16] (previously used to decide formulas of the theory of real closed fields) to construct the
connected regions bounded by O’. Note that their upper bounds grow doubly exponentially
with d’, whereas our polynomial space lower bounds suggest only single exponential time
growth with d'. It remains a challenging problem to close the gap between those lower
and upper bounds for generalized mover’s problems. Further progress will likely depend on
improvements to decision algorithms for the theory of real closed fields; recently Ben-Or et
al. gave a single exponential space decision algorithm [17].

4. Further Problems in Computational Robotics

There are some very challenging problems remaining in the field of Computational Robotics
beyond the complexity of the mover’s problems and some recent progress.

(1)Erictional Movement. The problem here is to plan movement for (O, P, pr, pr) in the case
contact is allowed in the presence of friction between surfaces. In [18], Rajan and Schwartz
give the first known decision algorithm in the case that O is a cylindrical hole and P is a
peg. In [19], Miller and Reif prove undecidability of planning frictional movement. What
natural subclass of frictional movement problems is decidable?

(2)Minimal Movement. The problem is, given a set of k polygonal obstacles in d space
defined by a total of n linear constraints, and points py, pr find a minimal length path from
pr to pr avoiding the obstacle O. [20] gives a O(nlogn) algorithm in the case d = 2 and
k=1. [21] givea 220 algorithm for d = 3. Recently, Reif and Storer [22] gave a O(nk logn)
algorithm for d = 2 and 2% time and nOlogk) space algorithms for d = 3. Is there a n©(1)
algorithm for d = 37

(3)Dynamic Movement. The problem is to plan the movement of a polygon in d dimensions
with bounded velocity modulus between points p;y and pg, so as to avoid contact with a set
O of k polygonal obstacles (defined by a total of n linear constraints) moving with fixed,
known velocity. [22] give the first known investigation of the computational complexity of
planning dynamic movement. They show that the problem of planning dynamic movement
of a single (k = 1) disk P in d = 3 dimensions is polynomial space hard. (This result is
somewhat surprising, since P in this case has only 3 degrees of freedom. Our key new idea
is to use time to encode a configuration of a polynomial space bounded Turing machine.) Is
this problem polynomial space hard for dimension d = 2?7 :

Asteroid avoidance problems are a natural subclass of dynamic mover’s problems where
each obstacle is convex and does not rotate. In [22]| Reif and Sharir give a polynomial time
algorithm for dimension d = 2 with a bounded number & = O(1) of obstacles and give gt
time and n@(1°87) space algorithms for dimension d = 3 with an unbounded number k of
obstacles. Is the asteroid avoidance problem polynomial in the case d = 37
(4)Adaptive Movement Planning. The problem is to do dynamic movement planning in the
case where the obstacles make unpredicted movements in real time. This problem requires
some sort of adaptive response to the changes of obstacles’ trajectories, and appears consid-
erably more difficult than the dynamic movement problem where the obstacles are assumed




to make predictable movements. Although no previous work has been done in this area, it
seems to be of central importance.
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