
A N E F F I C I E N T O U T P U T - S E N S I T I V E H I D D E N - S U R F A C E REMOVAL
ALGORITHM AND ITS PARALLELIZATION

(Pre l iminary Version)

J o h n H. R e l f and S a n d e e p Sen

Compute r Science Dept
Duke Universi ty,

Durham, N.C. 27706

A B S T R A C T

In this paper we present an algorithm for hidden surface removal for
a class of polyhedral surfaces which have a property that they can be
ordered relatively quickly like the terrain maps. A distinguishing
feature of this algorithm is that its running time is sensitive to the
actual size of the visible image rather than the total number of inter-
sections in the image plane which can be much larger than the visi-
ble image. The time complexity of this algorithm is O((k
+nflognloglogn) where n and k arc respectively the input and the
output sizes. Thus, in a significant number of situations this will be
faster than the worst ease optimal algorithms which have running
time f/(n 2) irrespective of the output size (where as the output size k
is O(n 2) only in the worst ease). We also present a parallel algorithm
based on a similar approach which runs in time O(log4(n+k)) using
O((n + k)/Iog(n+k)) processors in a C R E W P R A M model. All our
bounds arc obtained using ammortized analysis.

I. I n t r o d u c t i o n

The hidden-surface e l iminat ion problem (see [17] for an early
history) has been a fundamenta l problem in computer graphics and
can be s ta ted in the following manner - given n polyhedral faces in
a three dimensional envi ronment and a projection plane, we wish to
determine which port ions of the polygonal boundaries (regions) are
visible when viewed in a direct ion perpendicular to the project ion
plane. We are interested in a object-space solut ion (independent of
the display device) for this problem. I t has been shown t h a t the
worst case ou tpu t size for hidden-surface e l iminat ion can be
G(n~)for n segments and hence i t is clear t ha t the worst case
op t imal a lgor i thms for these problems will have a running t ime of
~(n2). Recent ly MeKenna[7} proposed an a lgor i thm for the general

2 problem which runs in O(n) and hence is worst-case opt imal .

A s l ight ly different version is the hidden-line e l iminat ion prob-
lem, where we are concerned only wi th the vis ibi l i ty of the edges
(and not regions). The a lgor i thms for hidden-surface removal can
be easily modified for the hidden-line e l iminat ion case bu t not
vice-versa. There are a lgor i thms for hidden line e l iminat ion in
l i tera ture whose running t ime is sensit ive to the intersect ions (of
the project ion of the segments) in the image plane, typical ly of the
order of O(n+k) logn (for example see Nurmi[13] and Schmitt[14]).
"Very recent ly this was improved to O(nlogn + k + t) by Goo-
drich[15] where t is number of intersect ing polygons on the image
plane. However, in practice, the size of a displayed image can be far
less than the number of intersections in the image plane. By size,
we mean the number of edges and ver t ices of the displayed image
as a (planar) graph, graph This happens because a large number of
these intersect ions are occluded by visible surface and hence do not
increase the complexi ty of the image. Our object ive is to design an
a lgor i thm whose running t ime is sensit ive to the final displayed
image ra ther than the number of intersections. In this paper we
design output-sensi t ive a lgor i thms for a restr icted class of surfaces
like terrains which will hopefully give us a good grip on the more

The ter ra in maps are polyhedrons in 3-space (see Figure 0)
which can be represented as

Figure 0: A typica l scene as a ter ra in map.

a function of two-variables , for example z ~ f(x,y) wlog. Moat geo-
graphical features can be represented in this manner. Another
character is t ic of these surfaces is tha t , the project ions on the z-x
and the z-y are monotone w.r. t , x and y axes(respectively). In fact
this turns ou t to be a very useful proper ty for mak ing the algo-
r i thms somewhat s impler than any general Hidden-surface removal
algori thm. In spite of tha t , i t has been shown tha t the size of the
visible image can be O(n ~) in the wors t case which is the number of
intersect ions in the project ion of the line segments into the image
plane.

A commonly used technique is to process the surfaces in
increasing dis tance from the v iewing plane so tha t each point needs
to be tes ted only once for v is ibi l i ty i.e. a point once pronounced as
visible is not going to be a l tered la ter in the course of the a lgor i thm
(the same holds t rue for the occluded points). The origins of this
approach can be found in [8]. However instead of performing the
vis ibi l i ty tes t for each point on the display device so t h a t the com-
plexi ty of the a lgor i thm is also dependent on the resolution of the
display device, we do i t in a device- independent manner. The out-.
pu t of our a lgor i thm is a g raph of the final image and not a pixel
by pixel descript ion of the image. Our techniques apply to terrain
maps, whose edges can be ordered from ' front to back ' very
quickly. We conjecture tha t they can be extended to surfaces like
s tar-shaped polyhedra wi thou t much difficulty.

general problem. :t This research was supported by National Science Foundation Grant DCR-333-0846, by a grant from the Office
of Naval Research under contract ONR-383-3246 and by Air Force contract AFSOR-313-5016.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1988 ACM 0-89791-270-5/88/0006/0193 $1.50 193

~Ate assume that the vertices of the terrain map are available
as 3-tuples (x,y,z) of coordinates after the necessary transformations
have bcen carried out. During the course of our algorithm, we
maintain an upper profile of the segments processed upto any given
point and test for the visibility of the current segment by intersect..
ing it with this profile. The portion of the segment inside the upper
profile (which is a simple monotone polygon) is not visible and
hence is discarded. The upper profile may have to be updated with
the portions of the segment that is visible. Thus the main pro-
cedure in our algorithm centers around detecting the intersection(s)
of a line segment with a simple (actually a monotone) polygon. For
this purpose, we use an efficient algorithm given by Chazelle and
Guibas[1]. However, we need to modify their algorithm to suit a
dynamic environment since the polygon (upper profile) is getting
modified over the course of execution. In the next section, we shall
review their algorithm in the context of making it dynamic. Cole
and Shaxir[3] have recently presented algorithms for fast processing
of query rays emanating from a point above the terrain map.
Though the overall approaches are somewhat similar, our work is
more closely related to the problem of producing a graph of the
displayed image without relating to the device-coordinates (similar
to [7]). It is not clear how the algorithm in Cole & Shaxir[3] can be
modified to handle the hidden-surface elimination problem by mak-
ing an object space version of it. In the following section we shall
present the sequential algorithm and its analysis.

Next, we present a parallel algorithm which runs in polyloga-
rithmic time using a number of processors dependent on the output
size. A straight-forward parallelization of the sequential algorithm

is not processor efficient. The constraint on the number of proces-
sors used requires us to take a non-conventional approach and use
dynamic parallel data-structures.

We conclude with discussions on possible improvements and
some open problems.

H. Intersecting segments with simple polygons

Given a simple polygon of n segments, how does one detect
all the intersections with a query segment efficiently ? ChazeUe and
Guibas[3] provided a near optimal solution to this problem using an
application of geometric duality. Their result can he summed up in
the following manner:

Fact 1 : There exists an O(n) space data structure representing a
simple polygon P which can be computed in time O(nlogn) which,
when given a segment s intersecting P in k places, allows us to find

these intersections in O((k+l)log((k~l)) time.

Though this is a near optimal (in the sense of an O{nlogn + k) time
and linear space) algorithm, it involves a very complex data organi-
zation which, does not appear to be suited for a dynamic environ-
ment i.e., one in which we may have to update this data structure
periodically to accommodate a change in the polygon itself. For
expository reasons we shall use a somewhat weaker result by
sacrificing a factor of O(logn) in time and space complexity and
then improve it. Before we describe our dynamic structure, we shall
review their simplified algorithm in some detail.

Given a simple polygon, we construct a binary tree structure
where each node represents a portion of the polygon and the leaves
correspond to the triangles of the triangulated polygon. The size of
the polygons associated with each node decreases geometrically
with depth so that the tree has a logarithmic depth. At any level of
the tree, the polygons associated with the nodes of the tree are dis-
joint (except for a shared edge which is a diagonal in the original
polygon) and their union is the given polygon. The polygon is
divided using Chazelle's[6] polygon cutting theorem which can be
stated as follows :

Fact 2 : Let P be a simple polygon with N vertices va,v2,..v N
sorted along some axis. Then it is possible to find, in O(N) time, a
pair of vertices vl,v j such that the segment vlv j lies entirely inside

the polygon and partitions it into two simplepolygons satisfying
C(Pi) < C(P2) _< 2C(P)/3 where C(P) is the size of the polygon.
The following corollary is almost immediate
Corollary I : The binary tree corresponding to the polygon can be
constructed in O(nlogn) time.
To detect the intersections, we use divide and conquer on the
polygon using this tree. We need to review a few results from
geometric duality for detecting intersections (Chaselle and Gui-

bas[l]).
Fact 3 : Given a simple polygon, all the lines passing through a
fixed side of the polygon form convex subdivisions in the 2 SP~
with resoect to the edges of the polygon it intersects first (see

Figure 1).

pl e p2

Figure 1 Tpl and Tp2 are the duals of the points pl and p2 Te is
the dual of the edge e. The dotted region is the dual of all rays in-
tersecting the edge e and Vq is the convex region in the dual plane
containing the duals of all the lines passing through e and q
without intersecting the polygon in between.

These convex subdivisions axe referred to as the visibility polygons
and Ps,b is the visibility polygon associated with a line which inter-
sects sides a and b without intersecting any part of the polygon in
between. The following ifact provides a bound on the ,total size of
all the visibility polygons:

Fact 4 : Since each edge of the convex subdivisions (in the 2 SP)
separates exactly two regions connected with two edges of the
polygon, the total size of all the visibility polygons is at most twice
the given polygon.
Remark : In future we shall use this fact as the size of the visibility
polygons being O(P(n)j where P(n) is a simple polygon with n ver-
tices.

The algorithm for computing the visibility polygons is based
on divide and conquer, where the polygon is divided into two
almost equal parts using fact I. The visibility structures of each of
these polygons is computed recursively and then they are merged in
linear time leading to the following result :

Fact 5: [1] It is possible to compute the visibility polygons (with
respect to a given side) of a simple polygon in O(nlogn) time and
O(n) space, where n is related to the polygon size.

Informally, the line intersection algorithm can be viewed as follow-
ing. From each node of the binary tree, we try to find the furthest

node such that the line joining the diagonals represented by the
nodes remains inside the polygon. Since each node is representative
of a portion of the uolv~on and the 'cutting diagonal' of the two

Two-sided plane or the dual plane, see [9] for details.

194

polygons of its 6hiidren nodes, we look for a node of least depth in
its subtrees such that the line does not intersect the polygon in
between. In other words, from a node v, we try to find a visibility
polygon Pv,x such that the dual of the line lies inside Pv,x and x is a
diagonal associated with a node which has the least depth among
all eligible nodes (see Figure 2). This gives rise to a data structure,
which is a binary tree (of the divided polygon), where each node is
augmented by pointers to the rightmost (leftmost) nodes at each
level of its left (resp. right) subtrees. Notice that each of these
pointers corresponds to a visibility polygon Pv,x where v and x are
the diagonals associated with the nodes. The size of the tree (aug-
mented with the extra pointers) is still O(n); however the size of
the visibility polygons associated with each level is O(n) thus
amounting to a total space of O(nlogn). The algorithm for detecting
the intersection of a line with the polygon is now quite simple.
From a point on the line inside the polygon, we hop to a node such
that the line does not intersect the polygon and repeat the pro-
cedure from the new node until we reach a leaf from where we can
detect the intersection in constant time (since it is a triangle). Each
such "hop" from one node to another involves a point location in a
convex polygon (in the dual plane), and the total number of such
searches is bounded by the height of the tree i.e. O(logn}..

F a c t 6: It is possible to test containment of a point in a convex
polygon in O(logn) time given a preprocessing time of O(n}.

The preproeessing can be absorbed in the preprocessing cost for
building the data structure and thus we can state the following
result of Chazelle and Guihas[1]

L e m m a 1 : Given a simple polygon, there exists a O(nlogn) space
data structure which can be constructed in O(nlogn) time which
allows us to detect the intersections between a line segment and the
polygon in O(log2n) time per intersection.

Given the above framework, we shall now extend it to a
dynamic environment, where not only do we detect the intersec-
tions but also modify the polygon by joining the intersections with
a straight line (see figure). The problem is primarily two-fold :

(I) We need to modify the data structure, specifically the visi-
bility polygons very fast with the introduction of the new seg-
ments.
(2) We have to keep the underlying tree balanced, so that the
depth of the tree remains logarithmic in number of leaves.

An eligible candidate for the underlying balanced tree is a class of
weight balanced trees BB(a) tree (Mehlhorn[4]). Appendix 1 gives a
description of the general properties of these weight-balanced trees.
We outline here some of the more important characteristics of this
tree relevant to our needs:

(i) These trees have logarithmic height in the number of
nodes.

(ii) The amortized cost for m deletions or insertions is O(m)
rotations, and the number of rotations geometrically decrease
as we get closer to the root.

.As it turns out both of these properties lead us to an efficient algo-
rithm. We shall now describe the elementary operations on this
data structure in the realm of our algorithm viz. insertion, deletion
and rotation.

Inser t ion

In a way insertion and deletion are quite related - the insertion of a
segment may lead to deletion of one or more segments (see Figure
3). By insertion of a line segment, we have to modify a number of
visibility polygons on its path from the root to the leaves.

C l a i m 1: The number of visibility polygons that have to be
modified by insertion of a line segment is O(logk} where k is the
number of nodes in the tree.

f

Figure 2 Decomposition of a polygon using the polygon cutthag theorem. The
dotted lines represent the visibility polygons enclosing the dual of the line seg-
ments passlng through the portion of the polygon between the diagonals
(correponding to the nodes) without intersecting the polygon in between.

dl

Y

Vdl d2 ~ o / / .j z

d2

e3 ~ e5

e4

F i g u r e 3: Updating the visibility polygons due to a new intersec-
tion. 'x', 'y ' and 'z' are the new vertices in the polygon Vdld2.

p r o o f : Consider a ease where the new segment passes over a single
diagonal, which leads to the deletion of the corresponding node and

insertion of two nodes corresponding to the two end points of the
new segment (see Figure 3a) This affects all the visibility polygons
Px,y such that the deleted diagonal lies between x and y. There can
be at most one such polygon in each level of the tree (since the
visibility polygons are non-overlaDDinz). If the new segment deletes

195

more than one diagonal (see Figure 3b), we can do it in time pro-
portional to the number of diagonals by viewing the process as
introduction of a sequence of hypothetical segments each of which
deletes a diagonal such that the resultant picture looks the same.
By repeating the procedure for deleting a single diagonal, we can
charge the work done to the output size (since all the eliminated
vertices corresponding to the diagonals are a part of the displayed
image).

Cla im 2: The modification in the polygon can be done by introduc-
ing each of the three points which are the duals of the new seg-
ments introduced.

• proof: The vertices of a visibility polygon are the duals of the
boundary edges of the polygon O (see Figure 3). The introduction
of a new segment introduces at most 3 such new edges or
equivalently 3 new vertices in a the dual polygon. Notice that the
insertion of the new vertices can lead to the deletion of some exist-
ing vertices, i.e. the modified polygon is the convex hull of the ver-
"~ices.

Fact 7:[10] The supporting lines can be found at a cost of O(log k)
time where k is the size of the convex polygon.

Fact 8 [9] : The intersection of two polygons (also a convex
polygon) can be found in O(m + n) time where the polygons have
m and n vertices respectively.

Cla im 3: A rebMancing operation (i.e. a rotation or a double rota-
tion) can be carried out in time O(th(v)) where th(v) is the number
of nodes in the subtree rooted at v (v is the vertex where rebalane-
ing operation is being applied).

proof: We shall prove it for a single rotation - the proof for double
rotation is similar (applying it twice). Let us denote the left sub-
tree of v as a and the subtrees of w as b and c. Figure 4a shows a
single rotation.

V

W

V
S

Figure 4: Rotation and double rotation in a BB(a) tree.

This may have the following effects on the visibility polygons.
(a) We have to recompute the visibility polygon Pp~eat(v),w.
(b) If there were a pointer from some ancestor of v to v
(corresponding to some visibility polygon), we simply remove
that pointer.

Actually tfhere may be some more variants of the above two cases
which can be handled very similarly. An important point to note is
that the visibility polygons corresponding to a, b and c are
unaffected. Analyzing the effects of (1) and (2) more carefully, we
have to compute intersection of two convex polygons, where the
size of each polygon is hounded by O(th(v)). From Fact 8, this can
be computed in the same asymptotic time bounds. O

F a c t 9: Let 1/4 ~ a < 1-,f2/2 and let f be a non-decreasing func-
tion, then the total amortized rebalancing cost of m insertions and

elo . .

deletions can be bounded by O(m ~f((l-ot)-')(l-a)') where e =
i r e

1/ log(I / i -a)

Remark : if f(k) ~ O(m(logkm)) then the total cost ~ O(m
log(k+l)m).

L e m m a 2 : The total rebalancing cost corresponding to updates of

the upper profile is O((k + n)logn) where k is the number of inser-
tions and n is the input size.
proof : Follows from claim 3 and Fact 9 (use k ~ 0 in the previous
remark).

HI. Description of the algorithm and its analysls

Given the background of the previous section, we are almost
ready to describe the main algorithm. The only detail left to be
worked out is the computation of an ordering of the surfaces to be
painted from front to back. For this we use the following scheme.
We project the edges on the X-Y plane and now the ordering of the
surfaces corresponds to ordering the edges on the plane in increas-
ing distances of x. Fortunately, there is a closely related problem
which can be used to do this.

Definition: A Chain C ~ (ul,us,..Up) is a PSLG with vertex set
{ul,..Up} and edge set {(ui,ui+l)} where i ~ 1,2 ..1>-1. A Chain is
called monotone with respect to a straight line 1 if a line orthogonal
to 1 intersects C in exactly one point.

Thus given the PSLG (which is the projection on the X-Y plane),
we have to decompose it into a set of monotone chains with respect
to the x axis. Note that this gives us a total ordering for the set of
edges (see Figure 5).

el

(a) (b)

Figure 5: Decomposition of a planar subdivision into monotone
chains.

Fact I0: [9] An N vertex COIN) edges) PSLG can be decomposed
into a set of monotone chains in O(NlogN) time and O(N) space.
Alternatively, the procedure given in Cole and Sharir[31 can also be
used for ordering the edges.

Algorithm VISIBLE

(1) We project the terrain map onto the X-Y plane and decompose
the resultant planar graph into a set of monotone chains (with
respect to the Y axis). The chains are ordered with respect to the X
axis and gives us an ordering of "painting" the surface from front
to back.

Gomment8 : During any subsequent stage of the algorithm, we main-
tain an upper profile (of the y-z projection) of the part of the surface

196

processed that jar. Notice that any point below (in the z direction)
this upper profile of edges would not be visible if] it belongs to a sur-
face beyond the part of the image processed until then.

(2) Pick up an edge from the monotone chain (obtained in stage I)
which is current chain being processed and find the intersections of
this segment with the upper profile (which is again a monotone
chain). The basic underlying problem is to detect the intersections
of a line segment with a monotone chain quickly and accordingly
update the upper profile. For this, we use the scheme described in
the previous section.

(3) Repeat step 2 until no more edges are left.
Note that the actual displayed image is not the upper-profile itself;
rather it is a PSLG with the faces (in the PSLG) belonging to a
specific surface. This is updated as we detect intersections of seg-
ments with the current upper-profile. As soon as a visible region is
detected, we can traverse its boundary (the bounding edges or ver-
tices) from the ordered list of vertices of the upper profile and
charge the cost to the visible face (region).

L e m m a 3: At any time during the algorithm the space that can be
used is at most O(na(n)logn) where c~(n) is the inverse Ackermann's
function.

P r o o f : This follows directly from the bound on the size of profile
which is O(n a(n)) for n line segments (Cole and Sharir[3]). This
does not include the space for the displayed image which is O(k).

L e m m a 4: Algorithm Visible runs in time O((k + n)log2n) and
space O(na(n)logn + k) where n is related to the input size and k is
the output size i.e. the number of edges and vertices in the planar
graph representing the output image.

proof: Stage 1 of the algorithm requires O(nlogn) time (from fact
9). Stage 2 of the algorithm is dominated by the time to update
O(log n) visibility polygons for insertion of a new visible sub-
segment. From Lemma 1, the total time for k (output size) intersec-
tions is O(k log2n). From Claim 1, Claim 2 and fact 6, we need the
same time to update visibility polygons corresponding to the inser-
tion of k segments. Compared to this, the total rebalancing cost is
only O(klogn) from lemma 2. The bound for space follows directly
from Lemma 3. []

Chazelle and Guibas[1] improve on the running time of their algo-
rithm from the bounds stated in Lemma 1, by observing that their
data structure can be made linear and then by a direct application
of f rac t ional cascading, which improve their running time by a
factor of logs. The reason for this being the ability to search the
visibility polygons in various levels given its position at some level
in constant additional time. The cost for augmenting the data-
structure to facilitate fractional cascading can be absorbed in the
preprocessing cost. Our problem is more formidable since we have a
dynamic environment - however the following result meets our
requirements.

F a c t 1112] : Queries can be supported in time O(lognloglogn) and
insertions and deletions can be in O(lognloglogn) in a dynamic data
structure where a given item needs to be simultaneously located in
O(logn) levels. The bounds for query is worst case, whereas they are
amortized for insertions and deletions.

It can be shown that a single rebalancing operation of the dynamic
data structure can be carried out in time proportional to
O(th(v)loglogn). Furthermore, for a sequence of m operations or
deletions we shall use the following result :
Fac t 12 [2]: The rebalancing operations of the underlying BB(a)
tree for a sequence of m insertions or deletions has cost
O(mlognloglogn).
Facts 11 and 12 can be applied directly to lemma 4 leading to our
main result of this section :

T h e o r e m 1: There exists an algorithm for hidden surface elimina-
tion for terrain maps which runs in time O((k+n)lognloglogn) and
space O(na(n) + k) where n is the input size and k is the size of the
displayed image.

IV A parallel a lgo r i t hm for h ldden surface el iminat ion

Overview

The parallel algorithm is not a direct parallelization of the
sequential algorithm developed in the previous sections but retains
some of the key ideas. A major stumbling block is the sequential
nature of detecting the polygon intersections with a line segment.
In addition, because of our strong commitment to developing algo-
rithms that are output sensitive, we use a model of parallel compu-
tation that is slightly different from the conventional PRAM model.
Our main objective for an efficient parallel algorithm is to restrict
the parallel running time to within polylogarithmie bounds and
simultaneously keep the P*T (processor-time) product proportional
to the output size of the displayed image. Since the final output
size cannot be predetermined we assume a "pool" of free processors
from where we can request processors as the algorithm progresses.
The maximum number of processors busy at any instance of the
algorithm is defined as the total number of processors needed by
the algorithm. In the description that follows we describe the algo-
rithm top-down followed by its analysis.

The main steps are :

1. Given a 2-D surface as a straight line graph in three dimensions,
we project the line segments on the X-Y plane (the viewing direc-
tion is the negative x axis and the surface is a function z ~ f(x,y)).
Because of the nature of terrain maps, no two projected segments
will intersect.

2. If the graph is not triangulated, we triangulate the graph using

Atallah, Cole and Goodrich[16] parallel triangulation. Since it is a
planar graph, the number of edges and faces is still O(n) and from
here our analysis will be in reference to the triangulated surface.

3. The triangulated graph is divided into two parts by a chain of
edges monotonic to the y-axis by a method described later. In fact
the triangulation is necessary to divide the image quickly and
efficiently (in polylogarithmic time using only a linear number of
processors). This process is repeated recursively on each of the
halves until we have a constant number of edges in each group.
Thus the depth of recursion can be at most O(logn). We will use a
lugn bit identifier for each trivial block where each bit represents
the position with respect to a particular level (the MSB being the
top level).

4. We now divide the graph into O(logn) stages in the following
manner. In the first stage we divide the edges into two groups -
one in which the MSB of the identifier is 1 and one which is 0. In
the second stage we divide into four groups according to the first 2
bits being 00, 01, 10, and 11. In general in the kth stage (k < l o g n)
the edges are divided into 2 k groups according to the first k bits of
the identifier.

5. For each level in parallel do
for each group in parallel do

Construct the profile of the edges. By profile we mean a
function g which is the maxiumm (in z coordinate) of
the projection of edges in the "hLZ plane. We will
describe the method ill detail shortly.

6. For each profile in parallel do
Build the data structure of Chazelle and Guibas[1] to detect
line segment intersection with the profile (which is a mono-
tone polygon). We shall see that this data structure can be
constructed auickly and efficiently.

197

7. We are now ready to compute the "visibility of each segment in
parallel. Because of the construction of the data-structure in step
7, we can allocate a processor to each segment and compute the
intersections sequentially with the profiles in front of the segment.
Note that there can be at most O(logn) profiles which determine
the visibility of the segment. However, we cannot afford to compute
all the intersections sequentially because

(i) The number of intersections can be large say n' (0 < e <
1) and/or
(ii) Some of the intersections computed may not be visible in
the final displayed image which will make the P*T product
much larger than the output size.

T o tackle the first problem, we can do a divide and conquer on the
length of the segment. We start from a point in the middle of the
segment (by middle we mean that the number of segments of the
profile is nearly equal on both sides). We detect the first intersec-
tion point on the left and right size. If we find an intersection say
on the right side we divide the remaining interval on the right into
equal parts, request for an extra processor from the "pool" of

processors and repeat the procedure. Notice that the maximum
depth of recursion can be at most O(log k) where k is the number
of intersections.

The problem posed by ii makes the previous approach inade-
quate. To ensure that we do not compute too many redundant
intersections, we have to find a way to compute the visibility of a
segment with respect to the actual profile. Computing all the n
profiles in parallel may lead to a high degree of redundancy unless
we are careful not to compute the same visible portions of the
image repeatedly at various profiles. For this we need a parallel
data structure to share the common portions of the profiles to keep
the total number of computations minimal (comparable to the
sequential case).

In the following paragraphs we describe each individual step
in more detail and also analyze the running time of the algorithm.
We do not address the issue of processor allocation in the analysis.
Using a randomized algorithm given by Miller and Reif, the time
bounds increase by a factor of O(logn) without affecting the proces-
sor bounds.

L e m m a 5: Given n non-intersecting segments we can partition the
set of edges into two sets S 1 and $2 such that no edge of $2 occludes
any edge in S I. Moreover the sets S 1 and S 2 are nearly equal (each
of them is atmost twice the size of the other) and this can be done
in O(logSn) time using n/logn processors in a PRAM model.

Proof : Consider a median line separating the end-points of the seg-
ments into two equal size sets. The median line is vertical to the
horizontal plane containing the projection of the segments (and is
also in the viewing direction)• This line will intersect some of the
segments which can be totally ordered with respect to the viewing
direction from ".back" to "front". Call the vertex induced graph on
the left as G], the one on the right G r and the set of line segments
intersecting as Gin. Notice that Gt and G r have no vertices in com-
mon and can be ordered independently of each other. Denote the
segments in G m as s i and its end-points as 1 t (left end-point) and r i
(right end-point). Recall that the graph is triangulated. Assume
inductively that G t and G r have been ordered such that there are
monotonic chains separating the the two graphs. Moreover, there is
a tree of such "separating-chains" for either graphs. For each vertex
1 i and rt, we keep track of the chains it belongs to (a vertex may be
part of more than one chain). Let max(l,i) and min(l,i) denote the
maximum and the minimum of the part of the G| in front of I i.
.Analogously, define max(r,i) and min(r,i) for r i. It follows that any
separating-chain containing s t can divide the graph into a ratio
where fi is determined by max(l,i), min(1,i), max(r,i), min(r,i) and i.
For example using the max on left and min on right the graph can
be partitioned into a ratio (max(1,i)+(min(r,i)+i)

([Gt-max(l,i) [)+([Gr-min(r,i) [)+k-i
where ICml = k. We claim that there exists a segment in G m that
separates the graph into the required ratio/~ E [1/3, 2/3]. Figure 6
shows an example of a separating chain. Suppose not, then there
a r e t w o

!
h i

i g

a ~ (3, 3)
b Ii d {4, 8)

I
!

F i g u r e 6: acef is a separating chain. The figures in parenthesis
indicate the minimum and maximum number of edges in a chain
ending at that vertex.

segments sl and si+l such that the ratio is less than 1/3 for st and
greater than 2/3 for Sl+ 1. Wlog, assume that in one case the front
part consists of less than 1/3 of the edges and then there is a jump
of 1/3. Notice that two consecutive edges in Gm have one vertex in
common (since the graph is triangulated) so while moving from sl to
sl+l, one of the endpoints (wlog the left endpoint) is fixed which
also fixes the left separating-chain. Thus on the right graph Gr, the
number of edges between the chains CR 1 and CRi+i is more than
n/3. Since from the inductive hypothesis, we have a tree of separat-
ing chains for Gr, there exists a separating chain Cr which when
concatenated with the separating chain on the left, divides the
graph in the required ratio. For the inductive hypothesis to remain
invariant we repeat the process recursively for the graph in front
and back (for both sides of the separating chain). Thus we get a
recurrence relation of the form:

T(n) < T(2n/3) + O(log2n) yielding T(n) = O(logSn).
The processor requirement is obviously linear in the input size. But
we can slow down the initial sorting (for finding median) by a fac-
tor of O(logu) since we need O(lo~n) at each level and hence cut
down on the processor requirements by O(logn) []

Coro l l a ry 2 : The set of segments can be partitioned into constant
size groups of segments with the property that the groups are
totally ordered in the direction from the viewing plane in O(log4n)

• n
time nsmg O (1 ~) processors.

This is achieved by using the above procedure reeursively. More-
over, there are partitions of groups of powers of 2 i.e. partitions for

groups of sizes O(-~r)
T

L e m m a 6 The profile of a group of k segments can be constructed

in O(log2k) time using O(a(k) l o s) processors in a PRAM model.

P r o o f : This is done by dividing the segments into two equal parts
(arbitrarily), computing the profiles recursively and then merging
the profiles as follows. Since we know that the profile of k/2 seg-
ments can have size at most ka(k) we can merge the endpoints of
segments constituting the profiles in O(logk) time using
O(a(k)k/logk) processors. Find the predecessor of a point in the
other set (which can be simultaneously computed while merging).
From this we can determine if the point is visible (i.e. if it is a part
of the resultant profile) by checking if it lies below a segment (one
of whose end-points is the predecessor). We can now determine the
intersections of the profiles using this information in the following
manner. Note that every intersection involves at least one segment
with the property that exactly one of its end-points is visible (see
Figure 7).

All that needs to be done is finding the intersection which can
again be determined from the predecessor information. The total
time bound follows from the recursive application of this procedure.
[]

198

'

Figure 7: Merging two profiles in parallel.

L e m m a 7 : The profiles of all the partitions (of sizes n . can be
21

computed in O(~(n)log2n) time (or c~(n)logZn) using a linear
n

(O(l~gn)) number of processors in a CREW PRAM model.

Proof : Observe that each segment can be involved in at most

O(logn) groups (for each value of i in ~-). The proof follows from

lemma 10 and an application of slow down.

Lernma 8: The intersection(s) of the boundaries of two convex
polygons with L and M vertices respectively can be computed
optimally in O(log(L+M)) time using (L+M)/Iog(L+M) processors.

Proof: Follows from a straightforward parallelization of an algo-
rithm given in Shamos & Hoey[76] and an optimal merging algo-
rithm given by Shiloach and Vishkin[81].

Fac t 13[Atallah, Cole & Goodrich[16]) : The data structure for
fractional cascading on a given graph G of size n can be con-
structed optimally in O(logn) time using n/logn processors in a
CREW PRAM model.

L e m m a 9: For a profile of size P, we can construct the data

structure of Chazelle and Guibas[1] for detecting intersections with
a line segment in O(logSP) time using P/logP processors.

Proof : A profile (which is monotonic) can be divided recursively
into halves (quarters etc) by sorting. We can sort P vertices in
O(log'2P) time using P/logP processors. Building the visibility tree
will require O(logP) time for each level of the tree (proceeding from
the leaves towards the root) from lemma 13. From fact 13, the data
structure for fractional cascading can be constructed within the
same time bounds.

L e m m a 10: Given a profile P and a line segment s, we can find all
the k intersections of the line segment with the profile in O(logn +
log2k) time using O(k/logk) processors in a CREW PRAM model.

Proof: We first find the diagonal of the profile such that the seg-
ment covers roughly equal number of diagonals on either side. This
can be done by a simple binary search of the endpoints of the seg-
ment. Then we divide the line segment into two rays (in opposite
directions) and do the sequential algorithm. If there is an intersec-
tion we allocate an extra processor to the part of the segment
between the original endpoint and repeat the above procedure
recursively. Clearly all the intersections will be detected within
O(logn) recursive calls and the toted number of processors required
is at most 1 + 2 + 4 + .. k < 2k. By slowing down, (i.e. finding
O(logk) intersections sequentially by each processor) the result fol-
lows. []

For the rest of the algorithm consider a binary tree whose leaves
correspond to the actual profiles at the groups with constant
number of edges. Any internal node corresponds to the profile of
the edges corresponding to the leaves of the sub-tree of which it is
the root. To compute the actual profiles at each of the leaves, we
take an approach similar to the parallel prefix computation. Start-

ing from tl~e root of the tree the computation proceeds towards the
leaves level by level and so after O(logn) stages we have all the
profiles and the data-structure for detecting intersections. A crucial
factor is sharing of common visible segments between nodes in the
same level. For example, a visible portion may be a part of the
profiles in the first, second and third group in the partition of seg-
ments into groups of size of n/4 segments. This "repetition" may
multiply at lower levels leading to a very inefficient algorithm since
we have to build the data-structure repeatedly on the same parts of
the profile again and again. Thus the total number of computations
during the course of the algorithm may turn out to be several times
larger than the output size, thus jeopardizing our initiM objective
of designing output size sensitive algorithms. Though there is some
repetition i.e. redundant computation but it is within a factor of
O(logn) as we shall show later. Our main procedure merges two
profiles such that the cost of merging is no more than a few loga-
rithmic factors from the output size. Before we shall analyze it
more rigorously, we need to review some known results.

Fac t 14: [Mehlhorn81] The class of BB(a) trees supports the full

repertoire of coneatenable queues. More specifically, two trees in
the class of BB(a) trees can be concatenated in time proportional to
O(log [S11/[S2D where $1 and S 2 are the size of the trees. The opera-
tion SPLIT can also be implemented in O(log [SI) time where IS[is
the size of the tree.

F a c t 15:[Mehlhorn84] There exists a constant c, such that a node
in a BB(c~) tree does not go out of balance (i.e. there is no need for
rotations or double rotations) before cL transactions (insertions or
deletions) pass through that node where L is the number of leaves
in the subtree of which it (the node) is the root.

Lernma 11: The number of rotations required to concatenate two
BB(a) trees geometrically decreases towards the root (higher up in
the tree).

Proof : Follows from Fact 15 and the procedure for concatenation
outlined in Mehlhorn[81].

L e m m a 12: Two profiles of size Ni and N2 can be merged in time
proportional to O(log2k + log2N) where N = min{N1,N2} using
O(k/logk + N/logN)) processors where k is the number of intersec-
tions between the two profiles.

P r o o f (sketch): Assuming that we already have the data structure
for finding intersections with line segments, we use the data struc-
ture corresponding to the larger profile and find the intersections of
the segments constituting the smaller profile with the larger profile.
From lemma 10, this can be done in O(log (Nl+N2)+log2k) time
using O(k/logk) processors. We now have to update the data struc-
ture (for the merged profiles). For each new chain of segments con-
sisting of a constant nmnber of edges, we can use a procedure simi-
lar to the sequentiM case and hence update at a cost of
O(log2(Nl+N2)) per intersection. For a chain of edges longer than a
constant, we use the data structure on this chain of edges and then
merge this by using the operations SPLIT and CONCATENATE
which can be carried out at roughly logarithmic cost from fact 14.
The rebalancing operations can be more expensive, but using
ammortized analysis we can bound the cost by charging the
rebalancing operations to the newly inserted segments. From Claim
3, and the fact that a rebalancing operation for a node is propor-
tional to the thickness of the node (as in the sequential case) we
need to charge only a constant number of rebalancing operations to
each segment inserted. Each rebalancing operation involves inter-
section of convex polygons which can be done in O(logN) time
(lemma 8) using an optimal number of processors. In the case of
parallel algorithm we shall charge the number of processors used
(instead of the total number of operations) to the new segments
inserted. The total time is the sum of the time used to insert an
individual segment and the rebalancing operations which is
bounded by O(log2(Nl+N2)). The total number of processors used
is clearly O(k/logk + N/logN). []

199

L e m m a 13: The above procedure for merging two profiles runs in

time O(log:3N) for each level of the profile computation tree using
O((n+k)/log(n+k)) processors (which is sensitive to the output size
at each level of the profile-computation tree}.

P r o o f (sketch): _As we go down the profile computation tree we
need to keep track of the shared visible portions of the image but
because of rotations the data-structure corresponding to the same
portion may be different for different nodes of the profile-
computation tree. This gives rise to the need for a pointer tree by
which we can distinguish between the different structures of the
same visible portion. The depth of this can be at most O(logn) and
hence the claim follows. (Instead of a pointer to its child a node has
a pointer tree and depending on which node of the profile-tree we
are we choose the corresponding child).

T h e o r e m 2 : There exists a parallel algorithm for hidden surface
elimination on terrain maps tha t runs in time O(log4n) using
O, n + k , t ' ~ -) processors and (n+k)logn space in a CREW PR.A.M

model where n and k are the input and output sizes respectively.

P roo f : For each level of the computation tree the algorithm
requires O(logZn) time and hence the time bound follows the previ-
ous lemma and corollary 2. The processor bound follows from
lemma 12. The space bound follows from the fact that there is a
redundancy of a factor of at most logn because of the depth of the
profile computation tree. []

"V. Concluding remarks
In the previous sections, we presented sequential and parallel

algorithms for bidden surface elimination for terrain maps. The
running time of the sequential algorithm is proportional to the size
of the output image, thus achieving the basic objective of this
paper. However, the performance of our algorithm is not optimal
in the worst case; in fact it is not clear what is the optimal running
time for such a class of algorithms (which depends on the output
size}. It is suboptimal by a factor of lognloglogn in the worst case
(which is achieved by an algorithm in [7]}. Since the hidden surface
algorithm is harder than the intersection problem (reporting all the
k intersections of n line segments} we conjecture that a running
time of O((k+n)logn} will be hard to improve upon.

The parallel algorithm is one of the first to be presented for
this problem and though it may not be very practical in its present
form, it sheds light on a class of parallel algorithms which are also
output sensitive (in the processor bounds}. We do not claim that
the hounds provided in this paper are tight; to the contrary we feel
that these may be considerably improved. Note that, compared to
the sequential algorithm the parallel algorithm is less efficient by a

factor of O(l°g2n).
loglogn

Also, our computations are based on the assumption that the
viewer is located at infinity i.e. the projections are orthonormal. A
more realistic image can be obtained placing the viewer at a finite
distance (and hence obtaining a perspective view of the terrain) and

modifying the algorithm suitably though it is not obvious tha t such
a modification can be done easily.

A natural direction for further work is to generalize the algo-
ri thm for hidden-surface elimination for any surface. For that we
need efficient algorithms for ordering the edges quickly and also
generalize the intersection detection algorithm of Chazelle & C, ui-
has[l] to polygonal boundaries that may have 'holes' inside.

Re fe r ences

[1] Chazelle B. and Guibas L.N., "Visibility and Intersection Prob-
lems in Plane geometry," Proc. ACM Symp.on Computational
geometry, 1985, pp. 135-146.

[2] Mehlhorn K. and Naher S., "Dynamic Fractional cascading,".

[3] Cole R. and Sharir M., Visibility problems for polyhedral ter-
rains," Teeh. Rept. No. 92, Courant Institute of Math. Se., Dec,
1986.

[4] Mehlhorn K : "Data Structures and Algor i thmsf Springer Publ.
Comp, 1984

a) Vol. 1: Sorting and Searching
b) Vol. 3: Multidimensional Searching and Computational
Geometry.

[5] Preparata F. and Shamos I., ~Computational Geometry: an
introduct ionf Springer Publ, 1985.

[6] Chazelle B., "A Theorem on Polygon Cutting with Applica-
tions," Proc. of IEEE FOCS 1982, pp. 339-349.

[7] McKenna M., "Worst-case optimal hidden-surface removal,"
Tech. Rept JHU/EECS-86/05.

[8] Wright T.J., "A Two-space solution to the hidden line problem
for plotting functions of two variables," IEEE Trans. on Comput. ,
vol. e-32, no. 1, pp. 28~33.

[9] Lee D.T. and Preparata F.P., "Location of a point in a planar
subdivision and its applications, SIAM Journal of Comput. , 6(3),
1977, pp. 594-606.

[10] Preparata F.P., "An optimal real time algorithm for planar
convex hulls," Comm. of the ACM, 22, 1979, pp. 402-405.

[11] Chaselle B. and Dobkin D., "Intersection of Convex Objects in
Two and Three Dimensions," JACM, vol 34, Jan 1987, pp 1-27.

[12] Mehlhorn K , "Arbitrary weight changes in Dynamic trees,"
Theoretical Informatics, vol 15, 1981, pp 183-211.

[13] Nurmi O., "A fast line-sweep algorithm for hidden line elimina-
tion," BIT, vol 25, 1985, pp 466-472.

[14] Schmitt A., "Time and Space bounds for hidden line and hid-
den surface elimination algorithms," EUROGRAPHICS '81, pp 43-
56.

[15] Goodrich M.T., "A polygonal approach to hidden-line elimina-
tion," Tech Rept 87-18, Dept of Computer Science, Johns Hopkins
University.

[16] Atallah M.J., Cole R. & Goodrich M.T., "Cascading Divide-
and-Conquer: A technique for Designing Parallel Algorithms," Proc.
of the 28th Annual Symp. on FOCS, 1987, pp. 151- 160.

[17] Sutherland I.E., Sproull R.F. & Schumacker R.A., "A Charac-
terization of Ten Hidden-Surface Algorithms," Computing Surveys,
vol 6, no.l , March 1974, pp. 1-25.

200

A p p e n d i x 1

BB(a) trees are a class of weight--balanced trees i.e the
number of nodes in the subtrees are balanced. If T is a binary tree
with left subtree T l and right subtree T r and a a fixed real in the
range [1L4 , 1- x/2/2], then T is of bounded balance a if for every
subtree T of T
a < p(T) < 1 - a w h e r e p (T) = l T l [= l -]Tr [/ lW[.
BB(c~) trees have the following properties:
(i) they have logarithmic depth: Height(T) < 1 + (log(n÷l)
-1)/1og(1/1 - ~))
(ii) they have logarithmic average path length

L e m m a 3 [Mehlhorn] : For all a • (1/4, 1 - x/2/21 there are con-
s tants d • [a, 1 - a] and ~ > 0 s u c h that for T, a b i n a r y tree with
subtrees Tl and Tr and
(1) T! and Tr are in BB(a)
(2) ITiI/ITI < a and either

2.1 [Ti[/([T[-1) > ~ implying that an insertion into T r
occurred or
2.2 (ITi I+I) / (ITI+ 1) ~ a implying that a deletion from left
subtree had taken place.
2.3 P2 is the root balance of Tr

then (i) if P2 ~ d then a rotation rebalanees the tree
(ii) if P2 > d then a double rotation rebalances the tree.

Figure 4 shows the rotation and double rotation operations and the
corresponding changes in the root balances. Note that d and ~ are
functions of a.

Lemma 4: [Mehlhorn] There is a constant e such that the total
number of rotations and double rotations required to process an
arbitrary sequence of m insertions and deletions into an initially
empty BB(a) tree is < cm and the total number of rebalancing
operations over all the vertices of level i BOi(v) = O(m (1-a)i).
(Note that i increases as we go up the tree which implies that
rebalancing operations are very rare as we get elaser to the root.)

200'

