
Movement Planning in the Presence of Flows ∗

John Reif† Zheng Sun‡

Abstract

This paper investigates the problem of time-optimum movement planning in two and three
dimensions for a point robot which has bounded control velocity through a set of n polygonal
regions of given translational flow velocities. This intriguing geometric problem has immediate
applications to macro-scale motion planning for ships, submarines and airplanes in the presence
of significant flows of water or air. Also, it is a central motion planning problem for many of the
meso-scale and micro-scale robots that recently have been constructed, that have environments
with significant flows that affect their movement. In spite of these applications, there is very little
literature on this problem, and prior work provided neither an upper bound on its computational
complexity nor even a decision algorithm. It can easily be seen that an optimum path for the
2D version of this problem can consist of at least an exponential number of distinct segments
through flow regions. We provide the first known computational complexity hardness result
for the 3D version of this problem; we show the problem is PSPACE hard. We give the first
known decision algorithm for the 2D flow path problem, but this decision algorithm has very
high computational complexity. We also give the first known efficient approximation algorithms
with bounded error.

1 Introduction

1.1 Formulation of the Problem and Motivation

We assume that the problem is given as a polyhedral decomposition of a two or three dimensional
space, where each region r defined by the polyhedral decomposition has an assigned translational
flow defined by a vector −→fr . Each region r is also associated with a non-negative real number
br giving the maximum Euclidean norm of the control velocity that the robot can apply within
r. In particular, if the robot is traveling on the shared boundary between two regions, it can be
considered as traveling inside either region, whichever is more favorable; the robot can always move
by an infinitesimal distance into that region, and then travel inside that region along the boundary
before eventually moving back onto the boundary. We define ρr to be the ratio between br and
|−→fr |.

The robot is considered to be a point with a given initial position and also a given final position
to be reached by the robot. At time τ = 0, the point robot is at the given initial position point.
Within each region r, the robot can apply, at each time τ ≥ 0 and in any direction, a translational
control velocity vector

−−→
v(τ) of bounded Euclidean norm |−−→v(τ)| ≤ br. However, the actual velocity

∗A preliminary version of this paper appeared in Proceedings of the 7th International Workshop on Algorithms
and Data Structures (WADS2001), volume 2125 of Lecture Notes in Computer Science. This work was supported
in part by DARPA/AFSOR Contract F30602-01-2-0561, NSF SEGR Grant NSF-11S-01-94604, NSF ITR Grant
EIA-0086015, DARPA/NSF Grant CCR-9725021.

†Department of Computer Science, Duke University, Box 90129, Durham, NC 27708-0129, USA. reif@cs.duke.edu
‡Department of Computer Science, Hong Kong Baptist University, Kowloon, Hong Kong.

sunz@comp.hkbu.edu.hk.

1

�
�
�
�

�
�
�
�

�
�
�
�

A
v

r

C

−−→
v(τ)

−→
fr

B

Figure 1: Composite velocity

of the robot at time τ is given by the sum
−−→
v(τ) + −→

fr of its control velocity vector
−−→
v(τ) and the

translational flow velocity −→fr of region r, as shown by Figure 1.
The flow path optimization problem is to find an optimum path of movement of the point robot

from the initial position to the final position with minimum time duration. The flow path decision
problem is to determine if the flow path optimization problem has time τ0 for a given rational
number τ0 > 0.

In an extreme example, where br = 0 at each region r, the movement of the robot is simply a
sequence of translations provided by each region’s flow, and the problem reduces to the prediction
of the path of the robot in the presence of overwhelming flow velocities where the robot has no
control of movement. In an another extreme example, where |−→fr | = 0 for each region r, this problem
reduces to the usual weighted region optimum path problem through regions of given translational
velocities.

In our investigation of the computational complexity of this problem, we assume that the
polygonal decomposition of input problem has n regions, and that the input problem is specified
with a total of nO(1) bits: in particular, for some constant c ≥ 1, we assume that we are given the
following within cn bits:

• the positions of the boundaries of these regions;

• the initial and final positions of the robot;

• the flow velocity and bounding velocity of the robot within each region.

This flow path problem has a number of macro-scale movement planning applications (where
the size of the robot is about one centimeter or above):

• the problem of moving a ship on the surface of an ocean or river through regions where the
surface currents have known flow velocity;

• the problem of moving a submarine through regions where the underwater currents have
known flow velocity;

• the problem of moving an aircraft through regions where the air currents have known flow
velocity.

The flow path problem becomes particularly relevant to these practical problems in the cases
where the object to be moved is under autonomous control, and where the flow velocities are

2

significant to require careful motion planning. This is an increasing occurrence as new robotic
devices are developed that are of a rapidly decreasing size, and hence these meso and micro-scale
robots can be strongly influenced by the local flows in their environment.

1.2 Previous Work and Our Results

Papadakis and Perakis [12, 13] previously gave heuristic algorithms for related problems such as
for minimal time vessel routing in ocean currents. Sellen [21] studied the optimum route problem
for a sailboat in a single region with multiple obstacles, where the velocity is a continuous function
of sailing direction. There seems not to have been much other previous research on this problem,
but there is considerable previous research on related movement problems.

Reif [15] provided the first PSPACE hardness result for a robotic motion planning problem,
and Schwartz and Sharir [20] gave motion planning algorithms using the theory of real closed fields
(Canny [4]). Reif and Sharir [16] gave algorithms and computational complexity lower bound results
for robotic motion with moving obstacles (also see Wilfong [25]). Reif and Sun [19] showed that
robotic motion planning in the presence of friction is undecidable.

Canny and Reif [5] showed the 3D shortest path problem with polygonal obstacles is NP hard,
and Reif and Storer [17] applied the theory of real closed fields to give a decision algorithm for
this problem. The reference [10] surveys work on various 2D and 3D minimal cost path problems,
including a variety of approximation algorithms for the weighted region optimum path problem
given by Mitchell and Papadimitriou [11], Mata and Mitchell [9], Lanthier et al. [7], Aleksandrov
et al. [1]. More recent works include Reif and Sun [18, 22, 23], and Aleksandrov et al. [2, 3] for
the weighted region optimum path problem, as well as Sun and Reif [24], and Lanthier et al. [8]
for the anisotropic optimum path problem.

One common approach for approximately solving these minimal cost path problems is to dis-
cretize the continuous geometric space by inserting discrete points (called Steiner points) on bound-
ary edges. This approach has been applied to the 3D Euclidean shortest path problem ([14]), the
weighted region optimum path problem ([7, 1, 2, 18, 22, 23]), as well as the anisotropic optimum
path problem ([8, 24]). In particular, Aleksandrov et al. [1, 2] proposed a logarithmic discretization
scheme to compute an ε-good approximate optimum path (a path whose cost is no more than (1+ε)
times that of an optimum path) for the weighted region optimal path problem.

In Section 1, we have defined and motivated the flow path problem, and stated our results. In
Section 2, we provide some preliminary results on the geometry of optimum paths for flow path
problems. In Section 3 we give a simple example where the 2D version of the flow path problem
consists of an exponential number of distinct segments through flow regions. In that section, we
also provide a proof that the 3D version of the flow path problem is PSPACE hard, which is the
first known hardness result for the computational complexity of this problem. In Section 4, we
provide the first known decision algorithm for the 2D flow path problem. This decision algorithm
is of theoretical interest only, but is proved by a rather interesting and unique inductive argument
that repeatedly makes use of root separation bounds derived from the theory of real closed fields.
In Section 5, we provide the first known approximation algorithm for the 2D flow path problem,
which is efficient for any given bounded error. In Section 6, we conclude the paper with some open
problems.

2 Preliminaries

We first state some relevant properties of optimum paths for path planning problems within regions
of translational flows:

3

Proposition 1 An optimum path is a simple path: it does not self-intersect.

Proposition 2 For any two points u and u′ in a flow region r, the face-wise optimum path con-
necting u and u′ is a straight-line path with a control velocity of fixed direction and fixed maximum
modulus br, as shown in Figure 2.

�
�
�
�

�
�
�
�

�
�
�
�

A
u

C

u′

B

r
φ

τbr

τ |−→fr |

−→
fr

u′′

Figure 2: Face-wise optimum path is straight-line segment

The face-wise optimum path from u to u′ is the path that takes the robot the minimum time
among all paths that lie entirely inside r. It directly follows Proposition 2 that each optimum path
in regions with flows is piecewise linear.

We now state the following two lemmas (refer to Figure 2) for 2D flow path problems. We will
apply them to develop approximation and decision algorithms.

Lemma 1 Let r = 4ABC be a region with flow −→
fr and let β = 6 BAC, as shown in Figure 3.

Let u be a point on AB with distance d to A and u′ be a point on AC with distance d′ to A.
Let α be the angle between BA and −→

fr and let θ be the angle between uu′ and BA. Then the
face-wise optimum path from u to u′ can be achieved by the point robot adopting a velocity with
maximum magnitude and an angle of Φ = arcsin(sin(α−θ)

ρr
) from uu′. Further, the cost τ of this

path is l2

br(
√

l2−T 2
1 +T2)

, where l = |uu′| =
√

d2 + d′2 − 2dd′ cosβ, T1 = (d sinα − d′ sin(α + β))/ρr

and T2 = (d cosα− d′ cos(α + β))/ρr.

Proof By Proposition 2, to go from u to u′ within region r with the minimum time, the robot
need to take a control velocity −→vr with a magnitude of br. Referring to Figure 2, we can draw a
“virtual triangle” 4uu′u′′ such that: 6 u′′uu′ = α− θ, uu′′ = τ(u, u′) · |−→fr | and u′′u′ = τ(u, u′) · br.
That is,

• uu′′ is the vector robot travels being carried by the flow;

• u′′u′ is the vector robot travels by its own control velocity −→vr within region r;

• uu′ is the composite vector of its movement.

By applying “Law of Sines” on this triangle, we have

sin(6 u′′u′u)
sin(6 u′′uu′)

=
|uu′′|
|u′′u′| =

|−→fr |
br

=
1
ρr

(1)

4

�
�
�
�

�
�
�
�

�
�
�
�

A
u

β

C

l

φ

u′

α
θ

B d

d′r

−→
fr

u′′

Figure 3: Computing τ(u, u′)

Note that there are two possible values for 6 u′′u′u. However, since the smaller 6 u′′u′u is, the
smaller τ(u, u′) is, we will take φ = 6 u′′u′u = arcsin(sin(α−θ)

ρr
).

To determine τ(u, u′), we first need to evaluate l = |uu′|. By applying “Law of Cosines” on
triangle 4u′uA we have

|uu′|2 = |uA|2 + |u′A|2 − 2 cos(6 uAu′) · |uA| · |u′A|,

and hence
l =

√
d2 + d′2 − 2dd′ cosβ. (2)

Here β is a constant but d and d′ change as u and u′ change.
To determine θ, we apply “Law of Sines” on this triangle and get

sin(6 u′uA)
|u′A| =

sin(6 u′Au)
|uu′| .

Therefore, we have

sin θ =
d′ · sinβ

l
(3)

and

cos θ =
d− d′ cosβ

l
. (4)

For 4uu′u′′, we can use “Law of Sines” to get the following equations:

sin(6 u′′uu′)
|u′′u′| =

sin(6 u′′u′u)
|uu′′| (5)

sin(6 u′′uu′)
|u′′u′| =

sin(6 uu′′u′)
|uu′| (6)

Therefore, we have

sinφ = sin(6 u′′u′u) =
sin(α− θ)

ρr
(7)

and

cosφ = cos(6 u′′u′u) =

√
1− sin2(α− θ)

ρ2
r

. (8)

5

By applying “Law of Sines” on 4u′′uu′ one more time, we have and thus

τ(u, u′) =
|u′′u′|

br

=
sin(α− θ) · l

sin(6 uu′′u′) · br

=
sin(α− θ) · l

sin(π − (α− θ + φ)) · br

=
sin(α− θ) · l

br(sin(α− θ) cos φ + sin φ cos(α− θ))

=
l

br(cosφ + sin φ cos(α− θ)/ sin(α− θ))

=
l

br(cosφ + cos(α− θ)/ρr)

=
l2

br(l cosφ + l cos(α− θ)/ρr)
.

To represent τ(u, u′) by constants and variables d and d′, we first need to represent cos(α− θ)
and sin(α − θ) by constants and variables d, d′. This can be done by expanding cos(α − θ) and
sin(α − θ) and then replacing terms of sin θ and cos θ by right-hand side of Equation 3 and 4
respectively. Now we have

sin(α− θ) =
d sinα− d′ sin(α + β)

l
(9)

and

cos(α− θ) =
d cosα− d′ cos(α + β)

l
. (10)

Let T1 = (d sinα−d′ sin(α+β))/ρr and T2 = (d cosα−d′ cos(α+β))/ρr. By applying Equation
8, 9 and 10 we have

τ(u, u′) =
l2

br(
√

l2 − T 2
1 + T2)

. (11)

This finishes the proof.

3 Lower Bound Results

In this section we provide some lower bound results for flow path problems.

3.1 Exponential Size of 2D Optimum Path

First we give a simple construction of an instance of 2D flow path problem where the optimum
path contains an exponential number of distinct straight-line segments.

Theorem 1 In the 2D flow path problem with O(1) regions and with flow rates specified by N bits,
the optimum path can consist of at least Ω(2N) distinct straight-line segments through flow regions.

Proof Refer to Figure 4. We construct a flow path problem where there are four unit square flow
regions on the plane, each bordering the origin, and with unit magnitude flows that force a point
robot with control velocity magnitude 2−N starting at the source point s, which is very close to the

6

origin, to spiral an exponential number of times around the origin before reaching the destination
point (1, 0).

In particular, for i = 0, 1, 2, 3, define angle θi = iπ/2 + π/4 and let the ith flow region be a
unit square centered at point (

√
2

2 cos(θi),
√

2
2 sin(θi)), with unit flow direction θi + π/2. Thus the

concatenation of the flows of the four squares run in counterclockwise fashion around the origin.
Starting at the origin, the goal point (1, 0) can only be reached by an exponential number of cycles
by the point robot around the origin, where on each cycle the point can get an additional distance
c2−N further from the origin, for a fixed constant c > 0.

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � �� � �� � �

� � �
� � �� � �

	 	 	
	 	 		 	 		 	 		 	 	
	 	 	

� � � � � � �
� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � �� � � � � �
� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

����
����

� � � � � � �� � � � � � �� � � � � � �� � � � � � �
� � � � � � �� � � � � � �
� � � � � � �� � � � � � �� � � � � � �
� � � � � � �� � � � � � �
� � � � � � �� � � � � � �� � � � � � �

� � � � � � �
� � � � � � �� � � � � � �� � � � � � �� � � � � � �
� � � � � � �� � � � � � �
� � � � � � �� � � � � � �� � � � � � �� � � � � � �
� � � � � � �� � � � � � �
� � � � � � �

t

−→
f2

−→
f3 −→

f4

−→
f1

c2−N

s

Figure 4: Optimum path may have Ω(2N) segments

3.2 A PSPACE Hardness Result for 3D Flow Path Problem

Next we prove that the 3D flow path problem is PSPACE hard with respect to log-space reduction.
We need to show that, for a polynomial space Turing Machine M with given binary input of length
n, we can construct an instance of the 3D flow path problem with polynomial number of bits such
that M accepts the input iff there is a path connecting the source point and the destination point
with a time cost no more than T , for some T > 0.

For any input ω of a polynomial space Turing Machine M , we can construct an input ω′ of an
equivalent linear space Turing Machine M ′ by “padding” a polynomial number of empty characters
to ω. For example, if M accepts an input only in nc1 space, we can construct ω′ by adding (nc1−n)
empty characters to the end of ω, such that M ′ accepts ω′ in linear space iff M accepts ω in nc1

space. Therefore, we assume without loss of generality that M accepts inputs in linear space.
Further, we assume that M accepts inputs only in 2cn steps of computation, for some constant
c ≥ 1.

7

We use a construction given by Canny and Reif [5] in their proof of the NP hardness of the
3D Euclidean shortest path problem. Given a Boolean formula with a list of N variables X, they
construct a system of a polynomial number of obstacles of polynomial size description to simulate
this formula; for a distinguished source point s, a distinguished destination point t, as well as an
intended path length L, there is a path of distance ≤ L between s and t avoiding these obstacles
iff the formula is satisfiable.

For our proof, we use a system of this type that simulates a Boolean formula encoding the
transition function of M . A robot will start at a specified source point and go through this system
multiple times, each time simulating a single step of computation by M . With the introduction
of flows into this system, each time the robot will take less than T

2cn time, for some T > 0, to go
through the system if it follows a legal path, that is, a path corresponding to a transition of M ’s
configuration by one step of computation. Therefore, as long as M accepts the input in 2cn steps of
computation, the robot will be able to reach a specified destination point in T time. On contrary,
the robot will either take more than T time or even get trapped in the system if it ever takes an
illegal path.

3.2.1 Canny and Reif’s NP Hardness proof for 3D Euclidean shortest path problem

0 1 2 3

0 1 2 3

Reverse Path Splitters

Clause Filters

Path Splitters

s

t

e

e′

Figure 5: Canny and Reif’s NP-hard construction

Canny and Reif’s construction consists of three parts, as shown in Figure 5. The first part will
generate by path splitting 2N equal-length path classes, each of which encodes a possible variable
assignment A of X and is denoted by pA. For a distinguished obstacle segment e, each path class
pA connects s and a point vA on e. The second part will extend each path class pA to connect vA

to a point v′A on another obstacle segment e′. The third part will merge the 2N path classes to a
single path, which eventually leads to t. Each path class pA will have length no more than L if A

8

encodes a satisfying assignment. Otherwise, pA will be “stretched” by a significant amount so that
its Euclidean length will be more than L.

The construction uses three types of substructures: i) path splitter, which doubles the number
of path classes by splitting them; ii) path shuffler, which performs a perfect shuffle of path classes;
and iii) literal filter, which filters for those paths that have a particular bit equal to zero or one in
their encoding. Each substructure consists of a number of plates with ε width and spacing, each
of which may contain one or two slits with ε width. Using path shufflers and literal filters, they
construct clause filters each of which filters for those paths whose encodings satisfy a particular
clause of the 3-SAT formula. (For details of the construction and usage of each substructure, please
refer to [5].)

3.2.2 Adding flows to the substructures

Our proof technique differs from that of [5] in that, while they filter out path classes encoding
non-satisfiable assignments by stretching them, we achieve so by forcing these path classes into a
trap by overwhelming flow force so that they will never reach the destination point. At the same
time, we also provide an overwhelming force along each path class encoding a satisfiable assignment
so that the time cost of such path class will be extremely small.

Accordingly, we need to modify the substructures used in [5] by defining flows and control
velocities. For the free space inside each slit, which is a rectangular volume with height and width
of ε and length of lslit, we define the modulus of control velocity of the point robot to be unit.
The modulus of the control velocity is defined to be 0 everywhere else, either within the free space
contained within the set of obstacles (not including slits), or inside the obstacles.

For each path splitter, we add strong flows each with modulus of f on top of the first plate,
between the first and second plates, and between the second and third plates, as shown in Figure
6. If four path classes (denoted by p1, p2, p3, and p4) come into a path splitter through Slit Sin of
Plate 1, they can choose to go left or right (without loss of optimality) in the space between Plate
1 and Plate 2, and cross Plate 2 through either Slit S1 or Slit S2. Either way, the path classes will
move in the same direction in the space between Plate 2 and Plate 3, and eventually cross Plate 3
through Slit Sout. As a result, we will have eight path classes (p′1, p′2, p′3, p′4, p′′1, p′′2, p′′3, and p′′4),
who have sub-paths of the same length inside this path splitter. If lsplitter is the Euclidean length
of each path class inside the path splitter, it will take lsplitter/f + O(ε) time to pass through the
path splitter. (Recall that the point robot needs to pass through O(1) slits of ε size with a unit
control velocity.)

Similarly, we can add strong flows with the same modulus f to each path shuffler so that it also
has a similar property.

For each literal filter, we will add a strong flow with modulus f so that every path whose
encoding has a zero (one) in a specified bit will pass through the literal filter in lfilter/f + O(ε)
time, as shown in Figure 7. Here lfilter is the Euclidean distance traveled by each such path. We
will also add a “bucket” to trap all the paths whose encodings have a one (zero, respectively) in
the specified bit. If the robot comes from any of these paths, it will be pushed by the strong flow
into the bucket. Since the robot has no control velocity in this region, it will never be able to leave
the literal filter.

3.2.3 The proof

Now we are ready to prove the following theorem:

Theorem 2 The 3D flow path problem is PSPACE hard with respect to log-space reduction.

9

Flow between Plate 1 and 2

Flow between Plate 2 and 3

Flow on top of Plate 1

p′′3

p2

S2

Sout

p1

p3

p4

S1

Sin

p′′2 p′1 p′3 p′4p′′1 p′2p′′4

Figure 6: Path splitter with flows

5 6 7210

0 1 2 3

3 4

Paths are "Trapped"

Figure 7: Path filter to trap paths having bn−1 = 1

10

We define a Boolean formula NEXT(X, X ′) of 2N variables, where N = cn + c′ for some
c′ = O(1). Here X (X ′, respectively) is a list of N Boolean variables such that each assignment A
(A′, respectively) of X (X ′, respectively) encodes a configuration C(A) (C(A′), respectively) of M .
For assignment (A,A′) of (X,X ′), NEXT(A,A′) is true iff C(A) and C(A′) are valid configurations
of M and C(A′) is reachable from C(A) by one step of computation by M . Let m be the number
of clauses of NEXT(X, X ′) in the 3-SAT formula.

We apply the second part of Canny and Reif [5] construction to form a set of 3D obstacles of
polynomial size f(n,m) with two distinguished obstacle segments e, e′. Note that instead we will
use our “flowed” version of substructures described above. For any two boolean assignments A and
A′, there is a point vA,A′ on edge e and another point v′A,A′ on e′. The Canny and Reif construction
[5] ensures that point v′A,A′ of segment e′ is reachable from point vA,A′ of segment e in (Euclidean)
distance at most L′ if NEXT(A, A′) is true (and hence the configuration of M may change from
C(A) to C(A′) in one step of computation).

With the addition of flows, a path that encodes a satisfying assignment will go from the point
vA,A′ of segment e to v′A,A′ of segment e′ in O(L′/f+c′′ ·ε) time. Here c′′ = O(f(n,m)) is the number
of slits a path will pass through. Also, each path that does not encode a satisfying assignment will
be trapped in one of the literal filters will never reach v′A,A′ .

Next we construct an obstacle segment e1 that contains 2N points, each of which encodes an
assignment A of X and is denoted by vA. We insert a number of path splitters between e1 and e
so that each point vA on e1 is connected with vA,A′ on e by a path p′A,A′ for each assignment A′ of
X ′. Similarly, we provide for an obstacle segment e′1 such that each point vA′ on e′1 is connected
with vA,A′ on e by a path p′′A,A′ .

0 1 2 3

0 1 2 3

20 21 22 23 301302 03 10 11 1200 32 333101

02 12 22 32 033120 30 01 11 2100 23 331310

20 21 22 23 301302 03 10 11 1200 32 333101

Path Splitters

Clause Filters

Path Shufflers

Reverse Path Splitters

encode the Boolean formula

encode the configuration

encode the configuration

of the TM of the current step

of the TM of the next step

for the transition function

e

e′

e1

e′1

Figure 8: PSPACE construction

11

Finally, we provide for a translational “ribbon” that connects points of e′1 back again to corre-
sponding points of e1. The ribbon consists of a sequence of connected rectangular flow strips each
with a flow of modulus f along the ribbon. Then the time of the point robot of move via this
ribbon from a point v′A′ of e′1 to vA′ of e1 is at most lribbon/f , where lribbon is the Euclidean length
of the ribbon. We also define the modulus of the control velocity to be 0 inside the ribbon so that
the point robot will not be allowed to move between points on e1 and e′1 that represent different
configurations.

Therefore, during each cycle, if the robot starts at point vA on edge e1, at the end it will reach
point vA′ on the same edge iff there is one step of computation that will bring M from configuration
A to configuration A′. The purpose of this ribbon is to allow each of the single step transitions of
the Turing machine to be repeated without changing the encoding of configurations.

Furthermore, we define the source point of the point robot to be a point vA0 of e1 such that A0

encodes the initial configuration of machine M , and we define the destination point of the point
robot to be a point v′Af

of e′1 such that Af encodes the accepting configuration of machine M .
We first assume that M has an accepting computation. By our assumption, M accepts the

input in 2cn steps. Therefore, it follows that there exists a path of time duration no more than
T = 2cn · ((L′ + lribbon)/f + c′′ · ε) for the point robot to move between the source and destination
points. If we choose ε ≤ lslit/(c′′ · 22cn+c′+2) and f ≥ 22cn+c′+2 · (lribbon + L′)/lslit, we have
T ≤ lslit/2cn+c′+1.

Next we examine the case when M does not have an accepting computation of 2cn steps. The
only way a point robot can avoid being “trapped” inside one of the literal filters is to “cheat” by
moving from one path class to another. The point robot can achieve such switching only inside one
of the slits since the modulus of the control velocity is 0 everywhere else. As there are N = cn + c′

boolean variables, the number of path classes is 2cn+c′ and therefore the spacing between path
classes in each slit is lslit/2cn+c′ . Moving with a unit control velocity, it will at least take the
point robot lslit/2cn+c′ time to switch from one path class to another, and therefore the total time
duration of such a path is more than T ′ = lslit/2cn+c′ .

It concludes that M has an accepting computation using polynomial space iff the flow path
problem has a path of time duration T = lslit/2cn+c′+1.

We still have to show that the transformation from an instance of the computation of M to
an instance of the 3D flow path problem can be computed in log space; that is, there exists
another deterministic Turing Machine M ′ such that, given the description of M (including its tape
alphabet and transition function) along with an input ω, M ′ can construct an instance of the 3D
flow path problem using an auxiliary tape of O(log n) size. The construction described above uses a
polynomial number of obstacles, each defined with polynomial number of bits. Further, the flow in
each region can be defined with polynomial number of bits, as well as the positions of the source and
destination points. Hence, the instance of flow path problem we use to simulate M can be specified
by polynomial number of bits. A Turing Machine M ′ could “write” the specifications of these
obstacles one by one, each time producing a single number of polynomial size. Since arithmetic
computations of numbers of polynomial size can be carried out in log space, M ′ will just need an
auxiliary tape of log size in addition to the input and output tapes.

This finishes the proof of Theorem 2.

4 A Decision Algorithm for the 2D Flow Path Problem

Here we develop a decision algorithm for the 2D flow path problem of size O(n) with coefficients
each of which has O(n) bits. We can assume, without loss of generality, that all flow regions are

12

triangles.
Lemma 1 implies the following lemma:

Lemma 2 Let sr(d, d′) be an optimum path segment for the robot within a convex flow region r
that begins at a distance d along a boundary edge e1 of r, and ends at a distance d′ along a boundary
edge e2 of r. Then there is a formula F (t, x, x′) of the existential theory of real closed fields (with
free variables t, x, x′ and involving only a constant number of other variables; furthermore with a
constant number of terms and with constant rational coefficients of at most O(n) size), such that
F (τ, d, d′) is true iff sr(d, d′) has time duration τ .

The existential theory of real closed fields is the logical system consisting of existentially quan-
tified formulas, whose variables range over the real numbers, and whose formulas are constructed
of inequalities of rational forms (these rational forms are arithmetic expressions involving these
real variables and fixed rational constants which may be added and multiplied together) and the
usual Boolean logical connectives AND, OR, NOT. Collins [6] gave a decision procedure for the
existential theory of real closed fields that was improved by Canny [4] to run in polynomial space:

Lemma 3 Given a formula of the existential theory of real closed fields of length n, the formula can
be decided in nO(1) space and 2O(n) time, and the existentially quantified variables can be determined,
up to exponential bit precision, within this computational complexity.

Collins [6] proved a useful Lemma as a byproduct of his decision procedure:

Lemma 4 If the solution of a formula of length n in the existential theory of real closed fields is
not the zero vector 0, then it is of modulus at least 2−2cn

, for some constant c > 0.

Now consider an optimum path S(d, d′) for the robot that begins at a distance d along a
boundary edge e of a flow region r, and ends at a distance d′ along the same boundary edge e
of r, and does not visit any points of e between these, but may pass through f (where f counts
the repetitions) other flow regions. Then S(d, d′) consists of at most O(f) straight-line segments,
through flow regions. By Lemma 2, we have:

Lemma 5 There is a formula F ′(t, x, x′) of the existential theory of real closed fields (with free
variables t, x, x′ and involving only O(f) other variables, and with O(n2) terms, and with constant
rational coefficients of at most O(n) size), such that F ′(τ, d, d′) is true iff S(d, d′) has time duration
τ .

We define a hierarchy of paths that have a recursive structural characterization. We will use the
term structural complexity, which should not be confused with the usual notion of computational
complexity. Intuitively, structural complexity provides bound on the structure of the way paths
crosses regions. Let a path have structural complexity 0 if it visits no flow region boundary edge
more than once, except possibly at the start and final points of the path. Let a path p have
structural complexity k if it does not have structural complexity < k and p = q0p1q1 . . . , phqh where
each pi is a path that passes through only one flow region, and each qi is a path of structural
complexity < k that begins and ends at the same flow region boundary edge. The following can be
proved by induction on the number of distinct flow edges:

Proposition 3 The maximum structural complexity number of an optimum path in any 2D flow
path problem with n triangular flow regions is at most nO(1).

13

We will derive, for any optimum path of structural complexity 0, a finite bound on the number
of straight-line segments through flow regions. Consider an optimum path S(d, d′) of structural
complexity 0 that begins and ends at a distance d, d′ respectively along a flow region boundary
edge e of a flow region r. Applying Lemma 4 to Lemmas 2 and 5, we have: either d = d′ or
|d′ − d| ≥ 2−2cn

, for some constant c > 0. This implies:

Lemma 6 Any optimum path of structural complexity 0 between two points consists of at most
22O(n)

straight-line segments through flow regions.

In the following, let E0(n) = n and for k > 0, let Ek(n) = 2Ek−1(n).
Now suppose as an inductive assumption that, for some k ≥ 0, any optimum path of structural

complexity k′ < k between two points consists of at most E2k′(O(n)) straight-line segments through
flow regions. Applying Lemma 5, we can construct an existentially quantified formula of the theory
of real closed fields with E2k′(O(n)) variables, which is true iff there is an optimum path of structural
complexity k′ and of length τ between the initial and final points.

Consider an optimum path S(d, d′) of structural complexity k that begins and ends at a distance
d, d′ respectively along a flow region boundary edge e of a flow region r. Recall that since S(d, d′)
has structural complexity k, it can be decomposed as q0p1q1 . . . , phqh where each pi is a path that
passes through only one flow region, and each qi is a path of structural complexity < k that begins
and ends at the same flow region boundary edge. Applying again Lemma 4 to Lemmas 2 and 5,
we now have: either d = d′ or |d′ − d| ≥ 2−2

O(E2(k−1)(O(n))) ≥ 1/E2k(O(n)). Hence we have that:

Lemma 7 Any optimum path of structural complexity k between two points consists of at most
E2k(O(n)) straight-line segments through flow regions.

Then applying the Canny [4] decision procedure (Lemma 3), we have that there is an algorithm
that decides, within E2k(O(n)) space and 2O(E2k(O(n)))time, the 2D flow path problem for optimum
paths of structural complexity k. By Proposition 3 (which bounds the structural complexity number
of an optimum path to be nO(1)), we have one of our main results:

Theorem 3 There is an algorithm, with E2k(O(n)) space and 2O(E2k(O(n))) time cost, for the 2D
flow path decision problem of size n, where k ≤ nO(1) is the minimum structural complexity of an
optimum path.

5 An Efficient ε-Approximation Algorithm

5.1 Approximating Optimum Paths by Discretization

The significance of the above algorithm is that the problem is decidable, but its complexity is
far too high for practical implementation. A natural strategy to approximately solve the 2D flow
path problem is to discretize the polygonal decomposition of the 2D space by inserting Steiner
points on boundary edges. A directed discrete graph G is then constructed by interconnecting each
pair of Steiner points or vertices on the boundary of the same region. Each directed edge (u1, u2)
connecting Steiner point (or vertex) u1 to u2 is assigned a weight that is equal to τ(u1, u2). A
discrete search algorithm can be used to find a shortest path from the given source point s to the
destination point t in G. This shortest path can be used to approximate a “true” optimum path in
the original continuous space.

The basic discretization scheme is to place m Steiner points uniformly on each boundary edge,
for some positive integer m. In G there will be O(nm) points and O(nm2) edges and thus the time

14

complexity of Dijkstra’s algorithm is O(nm2 + nm log(nm)). Using the BUSHWHACK algorithm
proposed by Sun and Reif (see ([22]), the optimum path in G can be computed in O(nm log(nm))
time without visiting all edges. This scheme is easy to implement; however, it does not guarantee
any relative (multiplicative) error bound of the approximation.

To compute an ε-good approximate optimum path from s to t for a given error tolerance ε, we
can adopt a logarithmic discretization scheme similar to the one used by Aleksandrov et al. for the
weighted region optimum path problem [1, 2]. The discretization scheme assumes that ρr > 1 for
any region r.

We first introduce some notations. Throughout this section, we assume that u is a point on a
boundary edge of a region. We let τmin(u) be the minimum cost of traveling (in either direction)
along a straight-line path between u and any point on an boundary edge not incident to u. For any
boundary edge e, we let ue denote the point on boundary edge e with maximum τmin(u). We define
be to be the lesser of the maximum composite velocities of the robot traveling in either directions
on e. For any vertex v, we use Rv to give a lower-bound on the cost of traveling (in any possible
path) between v and any point on an boundary edge not incident to v.

For any boundary edge e = v1v2, ue divides edge e into two segments v1ue and v2ue, as shown
in Figure 9. In the following we describe the placement of Steiner points ui,1, ui,2, · · · , ui,k on each
segment viue for i = 1, 2. The first Steiner point ui,1 is placed on segment viue with distance beRviε
to vertex vi. The subsequent Steiner point ui,j is placed between ui,j−1 and ue with a distance
εbeτmin(ui,j−1) to ui,j−1. We continue adding Steiner points until no more Steiner point can be
added on viue. That is, if ui,j is the last Steiner point added, no more Steiner point is inserted on
segment viue if |viui,j |+ εbeτmin(ui,j) ≥ |viue|. Finally, we add ue as a Steiner point on e.

� �� � � �� � �� �� �� � � �	 	

�� v2
eu1,2

u1,j−1

u1,j

ue

v1

u1,1

Figure 9: Adding Steiner points on boundary edge

Observe that, by this discretization scheme, instead of placing Steiner points with even spacing,
we place Steiner points with a higher density in portions of e closer to the endpoints than in portions
closer to ue, with the only exception that we do not place any Steiner point in the vertex vicinities
v1u1,1 and v2u2,1. The intuition is that, roughly speaking, if an optimum segment (a segment of an
optimum path) crosses e at a point close to ue, the segment will be relatively long. Therefore, it
is always possible to find an approximate segment (a segment connecting two Steiner points) that
“neighbors” the optimum segment; further, the cost of this approximate segment is no more than
(1 + ε) times that of the cost of optimum segment. By substituting every optimum segment of an

15

optimum path by an approximate segment, we will be able to construct a discrete path whose cost
is no more than (1 + ε) times that of the optimum path.

Once the Steiner points are chosen, we can again construct a weighted directed graph Gε and
then apply either the Dijkstra’s algorithm or the BUSHWHACK algorithm to compute a shortest
path from s to t in Gε, and use this path to approximate a true optimum path in the original
polygonal decomposition.

In the rest of this section, we will give an upper bound on the size of the discretization generated,
as well as prove that this discretization indeed contains ε-good approximate optimum paths.

5.2 Bounding the Size of the Discretization

We first establish several lemmas on some properties of the parameters used for constructing the
discretization.

Let r be a triangular region with boundary edges e, e′, and e′′, and let u be an internal point
on e, as shown in Figure 10. We denote inf{τ(u, q)|q ∈ e′} and inf{τ(q, u)|q ∈ e′} by τmin(u, e′)
and τmin(e′, u), respectively. Let umin(u, e′) (umin(e′, u), respectively) be the point on e′ such that
τ(u, umin(u, e′)) = τmin(u, e′) (τ(umin(e′, u), u) = τmin(e′, u), respectively). Further, we denote
min{τmin(u, e′), τmin(u, e′′)} and min{τmin(e′, u), τmin(e′′, u)} by τmin(u, r) and τmin(r, u), respec-
tively, and define umin(u, r) and umin(r, u) accordingly. Therefore,

τmin(u) = min{τmin(u, r), τmin(r, u), τmin(u, r′), τmin(r′, u)},

where r′ is the other flow region incident to e.
If u is a vertex of a region, we can define the above notations in an analogous manner. The

difference is that in this case u may have more than two incident regions, and for each region there
is only one boundary edge “facing” u.

The next two lemmas show that umin(u, e′), τmin(u, e′), umin(e′, u), and τmin(e′, u) (and hence
τmin(u) and ue) all can be determined in constant time.

� ��

��

��

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	r

u eB

C

A

e′
umin(e′, u)

umin(u, e′)

τmin(e′, u)

τmin(u, e′)

Figure 10: Points with minimum distance to/from u

Lemma 8 Let d′′ = (d · (sinα+ρr ·cosβ))/(sin(α+β)+ρr), where d, α, β, ρr, br and −→fr are defined
as previously.
i) if 0 ≤ d′′ ≤ |AC|: umin(u,AC) is the point with distance d′′ from A on AC and τmin(u,AC) =
(d · sinβ)/(|−→fr | · (sin(α + β) + ρr));
ii) if d′′ < 0: umin(u,AC) = A and τmin(u,AC) = τ(u, A);
iii) if d′′ > |AC|: umin(u,AC) = C and τmin(u,AC) = τ(u, C).

16

Proof Refer to Figure 11.a. Let u′ be the point on line AC (not necessarily between A and C)
with property that 6 u′′u′A = π/2. It is obvious that umin(u,AC) = u′ if u′ is between A and C.
Here u′′ is defined the same way as in the proof of Lemma 1.

AB

C

e

e′

u

u′′

r

−→
fr γ

u′

(a) Minimum cost from u to a boundary edge

AB

C

u e

e′
r

u′′

−→
fr

u′

(b) Minimum cost from a boundary edge to u

Figure 11: Computing τ(u, e′) and τ(e′, u)

Let γ = 6 u′′Au. Applying “Law of Sines” on 4u′′u′A and 4u′′uA, we have the following
equations:

sinα

|Au′′| =
sin γ

|uu′′| , (12)

|u′u′′| = sin(β − γ) · |Au′′|. (13)

Replacing |u′u′′| by sin(β − γ) · |Au′′| in Equation 12 and considering the fact that ρr · |uu′′| =
|u′′u′|,we get

γ = arctan(
sinβ

ρr

sin α + cosβ
) (14)

Therefore, we can determine |Au′|, |u′u′′| and |uu′′| as the following:

|uu′′| =
sin γ · |Au|
sin(α + γ)

=
sinβ · d

sin(α + β) + ρr
, (15)

|u′u′′| = ρr · |uu′′| = ρr · sinβ · d
sin(α + β) + ρr

, (16)

|Au′| =
|u′u′′|

tan(β − γ)
=

d · (sinα + ρr · cosβ)
sin(α + β) + ρr

. (17)

Here again d is the distance from u to A.
|Au′| represents the distance from A to u′ along the direction of ray AC. If u′ is on boundary edge

AC, i.e., 0 ≤ |Au′| ≤ |AC|, umin(u,AC) = u′ and τmin(u,AC) =
|uu′′|
|−→fr |

=
d · sinβ

|−→fr | · (sin(α + β) + ρr)
.

If |Au′| < 0, umin(u,AC) = A and τmin(u,AC) = τ(u,A); if |Au′| > |AC|, umin(u,AC) = C and
τmin(u,AC) = τ(u,C).

17

Lemma 9 Let d′′ = (d · (ρr · cosβ − sinα))/(ρr − sin(α + β)).
i) if 0 ≤ d′′ ≤ |AC|: umin(AC, u) is the point with distance d′′ from A on AC and τmin(AC, u) =
(d · sinβ)/(|−→fr | · (ρr − sin(α + β)));
ii) if d′′ < 0: umin(AC, u) = A and τmin(AC, u) = τ(A, u);
iii) if d′′ > |AC|: umin(AC, u) = C and τmin(AC, u) = τ(C, u).

Proof Observe that umin(AC, u) is the point on line AC with the property that 6 u′′uA = π/2−
6 CAB (as shown in Figure 11.b), if such a point lies between A and C. Here u′′ is the point such
that ρr|umin(e′, u)u′′| = |u′′u| and that

−−−−−−−−−→
umin(e′, u)u′′ has the same direction as −→fr . We can prove

Lemma 9 with similar steps used by the proof for Lemma 8.

With Lemmas 8 and 9, we can prove that τmin as a function of u has the following property:

Lemma 10 τmin(u)/|Au| is a non-increasing function when point u moves from A towards B along
boundary edge AB.

Since τmin(u) = min{τmin(u, r), τmin(u, r′), τmin(r, u), τmin(r′, u)}, to prove Lemma 10 it suf-
fices to establish the following lemma:

Lemma 11 Let r be a region incident to boundary edge AB. τmin(u, r)/|Au| is a non-increasing
function when u moves from A towards B on AB. Also, τmin(r, u)/|Au| is a non-increasing function
when u moves from A towards B on AB.

Proof Let r = 4ABC. For any u ∈ AB, let umin(u, r) be the point on BC or AC such that
τ(u, umin(u, r)) = τmin(u, r).

We first claim that umin(u, r) can not be vertex C for any u on AB. As shown in Figure 12.a, let
u′′ be the vertex of the “virtual triangle” defined as previously. Therefore we have ρr|uu′′| = |Cu′′|
and 6 u′′uA is equal to the angle between −→fr and uA, and 6 u′′uB is equal to the angle between−→
fr and uB. It is easy to prove that either 6 u′′CA or 6 u′′CB is less than π/2, given the fact that
ρr > 1. Suppose 6 u′′CA < π/2. Then there is a point u′1 on AC with distance δ to C such that
u′′u′1 < u′′C. Therefore, there exists a point u′′1 between u and u′′ on uu′′ such that ρr|uu′′1| = |u′1u′′1|
and thus τ(u, u′1) < τ(u, C).

u′′u′′1

C

u A

r−→
fr

u′1

B

Figure 12: umin(u, r) cannot be vertex C

This shows that when u is moving from A to B along AB, umin(u, r) will be either A or B, or
some internal point on AC or BC. If umin(u, r) is B or some internal point on BC, τmin(u, r)/|Au|

18

is decreasing. If umin(u, r) is A, τmin(u, r)/|Au| = 1/bA,B and thus is a constant. Similarly, if
umin(u, r) is an internal point on AC, τmin(u, r)/|Au| is a constant following Lemma 8. Therefore,
in all cases, τmin(u, r)/|Au| is non-increasing.

With a similar argument we can prove that, for each r incident to boundary edge AB, τmin(r, u)/|Au|
is a non-increasing function when u moves from A towards B on AB. This finishes the proof.

Next, we show how to compute be and Rv. As shown in Figure 13, r1 and r2 are the two regions
incident to e = v1v2, and α1 (α2, respectively) is the angles between v2v1 and −→fr1 (−→fr2 , respectively).
Therefore, the maximum velocity bv1,v2 of the robot traveling from v1 to v2 is the greater of the two

maximum velocities specified by the two regions. That is, bv1,v2 = max{
√

b2
r1
− sin2 α1 · |−→fr1 |2 +

|−→fr1 | · cosα1,
√

b2
r2
− sin2 α2 · |−→fr2 |2 + |−→fr2 | · cosα2}. Similarly, we can define bv2,v1 and let be =

min{bv1,v2 , bv2,v1}. Note that be is the minimum effective velocity of the robot traveling on boundary
edge e in any of the two directions.

r2

v2
e
−→
fr2

−→
fr1

r1

v1
bv1,v2 bv2,v1

Figure 13: Effective velocity on boundary edge

For any vertex v and any triangular region r incident to v, we define dmin(v, r) to be the
minimum Euclidean distance from v to the boundary edge of r that is not incident to v. We define
the radius of v to be the following: Rv = min{dmin(v,r)

br+|−→fr |
| r is incident to v}. Observe that while

τmin(v) is the minimum cost of a one-segment path between v and any point on the boundary of
the union of regions incident to v, Rv provides a lower bound on the minimum cost of any path
between v and any point on the boundary of the union, as stated by the following lemma:

Lemma 12 For any vertex v and any point u on the boundary of the union of all regions incident
to v, it takes at least Rv time for a robot to traverse from v to u, or from u to v.

Now we are ready to prove an upper bound on the number of Steiner points placed on each
boundary edge e with the following theorem:

Theorem 4 For a given ε, the number of Steiner points added on e according to the discretization

scheme described above is O(C ′
e

1
ε
(log

1
ε

+ C ′′
e)), where C ′

e and C ′′
e are determined by the geometry

as well as br and −→fr of each region r incident to e.

19

Proof Refer to Figure 9. For any j ≥ 1 and i = 1, 2, we have the following inequalities:

|viui,j | = |viui,j−1|+ |ui,j−1ui,j |
= |viui,j−1|+ εbeτmin(ui,j−1)

≥ |viui,j−1|+ εbe
|viui,j−1| · τmin(ue)

|viue| (following Lemma 10)

≥ |viui,j−1|+ εbe
|viui,j−1| · τmin(ue)

|e|
= |viui,j−1|(1 + εbe

τmin(ue)
|e|)

= beRviε · (1 + εbe
τmax(e)
|e|)j−1.

Let Ce = be
τmax(e)
|e| . Suppose ki is the number of Steiner points inserted on segment viue. As

|viui,ki | < |e|, we have beRviε · (1 + Ce · ε)ki−1 < |e| and thus ki < 1 +
log |e|

beRviε

log(1 + Ce · ε) . Assuming

that ε is small enough so that ε · Ce ≤ 0.5, we have

ki < 1 +
5

4Ce
· 1
ε
· (log

1
ε

+ log
|e|

beRvi

).

The total number of Steiner points placed on boundary edge e = v1v2 is k1 + k2 + 1 =

O(C ′
e

1
ε
(log

1
ε

+ C ′′
e)), where C ′

e = 1
Ce

and C ′′
e = log |e|

be

√
Rv1Rv2

.

To give upper bounds for both C ′
e and C ′′

e , we introduce three parameters θmin, ρmin and λ.
We let θmin be the smallest angle of any triangular region and let ρmin be the minimum br among
all regions. We define λ as the following:

λ = max{br/br′ |regions r and r′ are adjacent}.

λ indicates how drastic the velocity bound of the robot can change from one region to another. In
practice, since the triangular decomposition is usually a result of discretization, λ is not very large

in many cases. Further, we let Cskew =
λ · (ρmin + 1)

sin θmin · (ρmin − 1)
and call it the “skewness” parameter

of the space.
We have the following lemma:

Lemma 13 C ′
e = O(Cskew) and C ′′

e = O(log Cskew).

Proof We first show that C ′
e = O(Cskew). Let e = v1v2 be a boundary edge with adjacent regions

r1, r2. Let ei,1, ei,2 be the other two boundary edges of ri. Let vmid be the mid point of v1v2. For
each region ri, the Euclidean distance from vmid to any point on ei,1 and ei,2 is lower-bounded by
sin θmin|e|/2. The cost of traveling from vmid to any point on ei,1 and ei,2 is thus lower-bounded by
sin θmin|e|/(bri + |−→fri |). Therefore, we have τmin(vmid) ≥ sin θmin|e|/max{(bri + |−→fri |) | i = 1, 2}.

On the other hand, be, the minimum effective velocity of traveling on either direction on bound-

ary edge e, is lower-bounded by min{br1 − |
−→
fr1 |, br2 − |

−→−→
fr2 |}. We can have the following inequality:

20

C ′
e =

1
Ce

=
|e|

beτmax(e)

=
|e|

beτmin(ue)
≤ |e|

beτmin(vmid)

≤ |e|
be sin θmin|e|/(max{br1 + |−→fr1 |, br2 + |−→fr2 |})

=
max{br1 + |−→fr1 |, br2 + |−→fr2 |}

be sin θmin

≤ max{br1 + |−→fr1 |, br2 + |−→fr2 |}
min{br1 − |

−→
fr1 |, br2 − |

−→
fr2 |} sin θmin

≤ (1 + 1/ρmin)max{br1 , br2}
(1− 1/ρmin)min{br1 , br2} sin θmin

≤ (1 + 1/ρmin)λ
(1− 1/ρmin) sin θmin

=
(ρmin + 1)λ

(ρmin − 1) sin θmin

= Cskew.

For C ′′
e , recall that for i = 1, 2, we have

Rvi ≥ |e| sin2 θmin/max{|−→fr |+ br | region r is incident to vi}.

Therefore,

C ′′
e = log

|e|
be

√
Rv1Rv2

≤ log
|e|max{|−→fr |+ br | region r is incident to v1 or v2}

min{br1 − |
−→
fr1 |, br2 − |

−→
fr2 |}|e| sin2 θmin

≤ log
λ(ρmin + 1)

(ρmin − 1) sin2 θmin

= O(log Cskew).

Note that none of C ′
e, C

′′
e and Cskew is a function of ε.

We have the following theorem:

Theorem 5 For the nonuniform discretization scheme, the total number of Steiner points added

into the triangular decomposition is O

(
Cskew · n

ε
log

Cskew

ε

)
, where n is the number of triangular

regions in the decomposition.

The dependence of Cskew on λ implies that the variations of the velocity bound of the robot in
different regions will affect the complexity of this approximation algorithm. If the velocity bound
is uniform in all regions, less Steiner points are needed to guarantee an ε-approximation. On the
contrary, if the velocity bound changes drastically in adjacent regions, it will take much more
Steiner points to achieve the same approximation bound.

21

5.3 Bounding the Error of the Approximation

The discrete graph Gε constructed from the discretization described above has O(Cskew·n
ε log Cskew

ε)
points and O(n(Cskew

ε log Cskew
ε)2) edges. The time complexity of computing the shortest path in

G is O(Cskew·n
ε (Cskew

ε log Cskew
ε + log n) log Cskew

ε) by Dijkstra’s algorithm, or O(Cskew·n
ε (log Cskew

ε +
log n) log Cskew

ε) by the BUSHWHACK algorithm. In this subsection we analyze how well a discrete
path can approximate an optimum path in the original continuous space.

As we have mentioned earlier, an optimum path popt from a given source point s to a given
destination point t in the original continuous space is piecewise linear. It only bends on the
boundary of regions. We establish the following theorem that provides a bound on the error of
using a discrete path to approximate an optimum path.

Let p be a linear path with a cost of d(p). In the following we first describe how to construct a
discrete path p′ that “neighbors” a given linear path p, and then we show that the cost of such a
path p′ is no more than (1 + 9ε)d(p) by using several lemmas.

Linear Path Discrete Path p p′

ai+2

ai
bi+2

ai−1

ai+1

bi+1

bi

bi−1

s

t

Figure 14: Discrete path that neighbors a linear path

Let s = a1, a2, · · · , ak−1, ak = t be the points where a linear path p bends, as shown in Figure
14. We need to construct a discrete path with bending points s = b1, b2, · · · , bk−1, bk = t such that
each bi is either a Steiner point or a vertex. As path p only bends on the boundary of regions, each
bending point ai is either between two Steiner points on the same boundary edge, or between a
vertex and its neighboring Steiner point.

1 Suppose that ai is between two Steiner points uj , uj+1 on boundary edge e = vi1vi2 . Without
loss of generality, suppose that uj is between uj+1 and vi1 . Then we choose bi to be uj if uj

is between vi1 and ue; if otherwise, we choose bi to be uj+1.

22

2 Suppose that ai is between vertex vi1 and Steiner point u1 on boundary edge e = vi1vi2 . Then
we choose bi to be vi1 .

To evaluate d(p′), we need to estimate the cost τ(bj , bj+1) of each segment bjbj+1. In particular,
we need to compare τ(bj , bj+1) against τ(aj , aj+1) in various situations. In the following, we show:

Lemma 14 Assuming ε ≤ 1
3 , if both bj and bj+1 are Steiner points, then τ(bj , bj+1) ≤ (1 +

3ε)τ(aj , aj+1). Also, if one of bj and bj+1 is a vertex v of the triangular decomposition, then
τ(bj , bj+1) ≤ (1 + 3

2ε)τ(bj , bj+1) + εRv. Further, if both bj and bj+1 are vertices of the triangular
decomposition, then τ(bj , bj+1) ≤ τ(aj , aj+1) + εRv′ + εRv′′, where v′ = bj and v′′ = bj+1.

���� ����

����

����

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 	

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

��
��
��
��
��
��
��

uj+1,2

aj+1

aj

uj+1,1(bj+1)

uj,1(bj)uj,2e1

e2

Figure 15: Choosing Steiner points for discrete path

Proof We first prove the case when bj and bj+1 are Steiner points. Suppose bj is between uj,1 and
uj,2 on boundary edge e1 and bj+1 is between uj+1,1 and uj+1,2 on boundary edge e2, as shown
in Figure 15. Without loss of generality, suppose bj = uj,1 and bj+1 = uj+1,1. Let r be the
region incident to both e1 and e2. We have τ(aj , aj+1) + τr(aj+1, uj+1,1) ≥ τ(aj , uj+1,1) following
Proposition 2. As

τr(aj+1, uj+1,1) ≤ τr(uj+1,2, uj+1,1) ≤ ετmin(uj+1,1)

and
τ(aj+1, uj+1,1) ≥ τmin(uj+1,1),

we have τ(aj , aj+1) ≥ (1− ε)τmin(uj,1). We can also prove that τ(aj , aj+1) ≥ (1− ε)τmin(uj+1,1) in
a similar manner. Applying Proposition 2 one more time, we can get the following inequalities:

τ(bj , bj+1) = τ(uj,1, uj+1,1)
≤ τr(uj,1, aj) + τ(aj , aj+1) + τr(aj+1, uj+1,1)
≤ τr(uj,1, uj,2) + τ(aj , aj+1) + τr(uj+1,2, uj+1,1)
≤ ετmin(uj,1) + τ(aj , aj+1) + ετmin(uj+1,1)

≤ 2ε

1− ε
τ(aj , aj+1) + τ(aj , aj+1)

≤ (1 + 3ε)τ(aj , aj+1),

since ε ≤ 1
3 .

The other two cases can be proved similarly.

23

With this lemma, we are ready to establish the following theorem:

Theorem 6 For any piecewise linear path p, there exists a discrete path p′ such that d(p′) ≤
(1 + 9ε)d(p).

Proof Among the bending points b1, b2, · · · , bk−1, bk of p′, let bi1 , bi2 , · · · , bid be vertices of the
triangular decomposition, where 1 = i1 < i2 < · · · < id−1 < id = k. Let bij = vj for 1 ≤ j ≤ d. We
have

d(p′) =
k∑

j=1

τ(bj , bj+1)

≤ (1 + 3ε)
k∑

j=1

τ(aj , aj+1) + ε · (Rv1 + 2
d−1∑

j=2

Rvj + Rvd
)

= (1 + 3ε)d(p) + ε · (Rv1 + 2
d−1∑

j=2

Rvj + Rvd
).

For each j, 1 ≤ j < d, let Cj =
∑ij+1−1

i=ij
ajaj+1. That is, Cj is the sub-path of p between aij

and aij+1 . Let r be the region incident to bij , aij and aij+1 and let r′ be the region incident to
bij+1 , aij+1−1 and aij+1 . As bijaij + Cj + aij+1bij+1 is a path from vertex vj to vj+1, we have

τr(bij , aij) + d(Cj) + τr′(aij+1 , bij+1) ≥ Rvj

as well as
τr(bij , aij) + d(Cj) + τr′(aij+1 , bij+1) ≥ Rvj+1 .

As τr(bij , aij) ≤ εRvj and τr′(aij+1 , bij+1) ≤ εRvj+1 , we can get d(Cj) ≥ (1− 2ε)(Rvj + Rvj+1)/2
and therefore

Rv1 + 2
d−1∑

j=2

Rvj + Rvd
=

d−1∑

j=1

(Rvj + Rvj+1) ≤
d−1∑

j=1

2
1− 2ε

d(Cj) =
2

1− 2ε
d(p) ≤ 6d(p).

Hence d(p′) ≤ (1 + 3ε)d(p) + 6εd(p) = (1 + 9ε)d(p).

Combining Theorem 5 and 6 we have the second main result of this paper:

Theorem 7 An ε-good approximation of the optimum path in regions with flows can be computed
in O(Cskew·n

ε (log Cskew
ε + log n) log Cskew

ε) time, where n is the number of regions.

6 Conclusion

While we have provided the first decision procedure for the two-dimension flow path problem, the
complexity of our algorithm appears far too high to have practical use. There is no known lower
bound for this 2D version of the flow path problem. Furthermore, there is no decision algorithm for
the 3D version of the flow path problem. It remains an open problem to determine a more exact
complexity bound for the 2D and 3D flow path problems.

24

References

[1] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack. An ε-approximation algorithm
for weighted shortest paths on polyhedral surfaces. In Proceedings of the 6th Scandinavian
Workshop on Algorithm Theory, volume 1432 of Lecture Notes in Computer Science, pages
11–22, 1998.

[2] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Approximation algorithms for geometric
shortest path problems. In Proceedings of the 32nd Annual ACM Symposium on Theory of
Computing, pages 286–295, 2000.

[3] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. An improved approximation algorithm for
computing geometric shortest paths. In Proceedings of the 14th International Symposium on
Fundamentals of Computation Theory, volume 2751 of Lecture Notes in Computer Science,
pages 246–257, 2003.

[4] J. Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, pages 460–467, 1988.

[5] J. Canny and J. H. Reif. New lower bound techniques for robot motion planning problems. In
Proceedings of the 28th Annual Symposium on Foundations of Computer Science, pages 49–60,
1987.

[6] G. E. Collins. Quantifier elimination for real closed fields by cylindric algebraic decomposi-
tion. In Proceedings of the 2nd GI Conference on Automata Theory and Formal Languages,
volume 33 of Lecture Notes in Computer Science, pages 134–183, 1975.

[7] M. Lanthier, A. Maheshwari, and J. Sack. Approximating weighted shortest paths on polyhe-
dral surfaces. Algorithmica, 30(4):527–562, 2001.

[8] M. Lanthier, A. Maheshwari, and J.-R Sack. Shortest anisotropic paths on terrains. In Proceed-
ings of the 26th International Colloquium on Automata, Languages and Programming, volume
1644 of Lecture Notes in Computer Science, pages 524–533, 1999.

[9] C. Mata and J. Mitchell. A new algorithm for computing shortest paths in weighted planar
subdivisions. In Proceedings of the 13th Annual ACM Symposium on Computational Geometry,
pages 264–273, 1997.

[10] J. S. B. Mitchell. Geometric shortest paths and network optimization. In Jörg-Rüdiger Sack
and Jorge Urrutia, editors, Handbook of Computational Geometry, pages 633–701. Elsevier
Science Publishers B.V. North-Holland, Amsterdam, 2000.

[11] J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem: Finding shortest
paths through a weighted planar subdivision. Journal of the ACM, 38(1):18–73, January 1991.

[12] N. Papadakis and A. Perakis. Minimal time vessel routing in a time-dependent environment.
Transportation Science, 23(4):266–276, 1989.

[13] N. Papadakis and A. Perakis. Deterministic minimal time vessel routing. Operations Research,
38(3):426–438, 1990.

[14] C. H. Papadimitriou. An algorithm for shortest-path motion in three dimensions. Information
Processing Letters, 20:259–263, 1985.

25

[15] J. H. Reif. Complexity of the mover’s problem and generalizations. In Proceedings of the 20th
IEEE Symposium on Foundations of Computer Science, pages 421–427, 1979.

[16] J. H. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In Proceedings
of the 26th Annual Symposium on Foundations of Computer Science, pages 144–154, 1985.

[17] J. H. Reif and J. A. Storer. A single-exponential upper bound for finding shortest paths in
three dimensions. Journal of the ACM, 41(5):1013–1019, September 1994.

[18] J. H. Reif and Z. Sun. An efficient approximation algorithm for weighted region shortest path
problem. In Proceedings of the 4th Workshop on Algorithmic Foundations of Robotics, pages
191–203, 2000.

[19] J. H. Reif and Z. Sun. On frictional mechanical systems and their computational power. SIAM
Journal on Computing, 32(6):1449–1474, 2003.

[20] J. T. Schwartz and M. Sharir. On the piano movers problem: II. general techniques for
computing topological properties of real algebraic manifolds. Advances in applied mathematics,
4:298–351, 1983.

[21] J. Sellen. Direction weighted shortest path planning. In Proceedings of the 1995 IEEE Inter-
national Conference on Robotics and Automation, pages 1970–1975, 1995.

[22] Z. Sun and J. H. Reif. BUSHWHACK: An approximation algorithm for minimal paths through
pseudo-Euclidean spaces. In Proceedings of the 12th Annual International Symposium on
Algorithms and Computation, volume 2223 of Lecture Notes in Computer Science, pages 160–
171, 2001.

[23] Z. Sun and J. H. Reif. Adaptive and compact discretization for weighted region optimal path
finding. In Proceedings of the 14th International Symposium on Fundamentals of Computation
Theory, volume 2751 of Lecture Notes in Computer Science, pages 258–270, 2003.

[24] Z. Sun and J. H. Reif. On energy-minimizing paths on terrains for a mobile robot. In Proceed-
ings of the 2003 IEEE International Conference on Robotics and Automation, pages 3782–3788,
2003.

[25] G. Wilfong. Motion planning in the presence of movable obstacles. In Proceedings of the 4th
Annual ACM Symposium on Computational Geometry, pages 279–288, 1988.

26

