We first prove a cutting lemma that is a 3-dimensional variant of a lemma shown in [Tya89]. In this section, we use the term box to refer to a rectilinear parallelepiped rather than an optical box.

Lemma 1 Let $C = (V, W)$ compute f as described above. Let us assume that no input port reads more than $n/486$ input bits. There exist two sets of input ports I_1 and I_2 such that I_1 and I_2 each read at least $n/486$ input bits. Let C_{I_1} and C_{I_2} denote the smallest boxes containing I_1 and I_2 respectively. Let s_1 (s_2) be the surface area of C_{I_1} (C_{I_2}). Let d_x, d_y and d_z be the distance between C_{I_1} and C_{I_2} along x, y and z axes respectively. Then one of the following statements holds true.

1. $d_x \geq \min(\sqrt{s_1/6}, \sqrt{s_2/6})$.
2. $d_y \geq \min(\sqrt{s_1/6}, \sqrt{s_2/6})$.
3. $d_z \geq \min(\sqrt{s_1/6}, \sqrt{s_2/6})$.

Proof Sketch: Since no input port reads more than $n/486$ input bits, we can find a vertical plane orthogonal to x–axis V_x bisecting the chip into two