halves such that each half reads at least \(n/3 \) input bits. The argument for it is similar to the argument in Ullman ([Ull84], page 49). Let us concentrate on the right-hand side of \(V_x \). Once again, we can find a vertical plane orthogonal to the \(y \)-axis \(V_y \) that cuts the right-hand side of \(V_x \) into two parts such that each part reads at least \(n/9 \) input bits. The left-hand side of \(V_x \) is also cut into two parts by the plane \(V_y \). At least one of these parts reads \(n/6 \) input bits. Without loss of generality (WLOG), let the south-west quadrant \(SW \) read at least \(n/6 \) input bits as shown in Figure 1. Let us further cut this south-west part with a plane orthogonal to \(z \)-axis \(H_z \) such that both the halves of \(SW \) read at least \(n/18 \) input bits. This plane also cuts the the north-east part \(NE \) into two parts. At least one of these parts reads at least \(n/18 \) input bits. WLOG, let the upper part \(NE_u \) read at least \(n/18 \) input bits. In the following, we will consider \(NE_u \) and the lower part of \(SW \), \(SW_l \). Let \(C_{I_1} \) and \(C_{I_2} \) be the smallest boxes containing the input ports in the \(SW_l \) and \(NE_u \) quadrants respectively, as shown in Figure 2.

Now cut both \(C_{I_1} \) and \(C_{I_2} \) as follows to create 8 boxes each reading at least \(n/486 \) input bits. First use a vertical plane \(V'_z \) to cut \(C_{I_1} \) into two parts each reading at least \(n/54 \) input bits. Then cut each of these parts with a plane orthogonal to \(y \) axis to get four parts each reading at least \(n/162 \) input bits. Now use a plane orthogonal to \(z \)-axis to cut each of these

Figure 2: Further Cutting in the Cutting Lemma