have continuous derivatives. The energy consumption of a zero length link should be zero, \(f(0) = 0 \).

Clearly, the \(k \) segments of the link should all have the same length. Otherwise, the energy cost is higher as the sum of a nonlinear function of \(k \) variables, \(\sum_{i=1}^{k} f(l_i) \) with the condition \(\sum_{i=1}^{k} l_i = l \) is minimized with \(l_i = l/k \). Hence let us consider the scenario when \(k \) drivers with each one driving a segment of length \(l/k \) are introduced. Then the energy required is given by \(k f(l/k) \). The time taken is \(\min\{k, T\} \), which is \(O(k+T) \). We wish to analyze the \(ET \) cost for the complete range of values for \(k \) and find the value of \(k \) that minimizes it. Figure 4 shows the rough shape of this plot.

\(k \leq T \): For all functions \(f(x) \geq x \), \(ET \) is a non-increasing function of \(k \) for \(k \leq T \). For \(k \leq T \), the time is at least \(T \), while the energy is given by \(k f(l/k) \). Thus the \(ET \) product is \(g(k) = kT f(l/k) \). We claim that \(g(k) \) has a derivative that is non-positive for all \(1 \leq k \leq l \).

\[
g'(k) = T \left[f\left(\frac{l}{k}\right) + \frac{f'(l/k)}{k} \right]
\]

Since \(T \geq 0 \), to show that \(g'(k) \) is non-positive, we need to show that \(\left[f\left(\frac{l}{k}\right) + \frac{f'(l/k)}{k} \right] \) is non-positive. Replacing \(l/k \) by \(x \), we get \(g_1(x) = f(x) + xf'(x) \) for \(1 \leq x \leq l \). Since \(f(x) = 0 \) for \(x = 0 \), \(g_1(0) = 0 \). We show that for \(f(x) \geq x \) and \(x \geq 0 \),