CPS 140 - Mathematical Foundations of CS Dr. S. Rodger

Section: Properties of Context-Free Languages (handout)

Section 3.5

Which of the following languages are CFL?

- L= $\{a^n b^n c^j \mid 0 < n \le j\}$
- L={ $a^n b^j a^n b^j \mid n > 0, j > 0$ }
- L={ $a^n b^j a^k b^p \mid n+j \le k+p, n>0, j>0, k>0, p>0$ }

Pumping Lemma for Regular Language's: Let L be a regular language, Then there is a constant m such that $w \in L$, $|w| \ge m$, w = xyz such that

- $|xy| \leq m$
- $|y| \ge 1$
- for all $i \geq 0$, $xy^i z \in L$

Pumping Lemma for CFL's Let L be any infinite CFL. Then there is a constant m depending only on L, such that for every string w in L, with $|w| \ge m$, we may partition w = uvxyz such that:

$$|vxy| \le m$$
, (limit on size of substring)
 $|vy| \ge 1$, (v and y not both empty)
For all $i \ge 0$, $uv^i x y^i z \in L$

• **Proof:** (sketch) There is a CFG G s.t. L=L(G).

Consider the parse tree of a long string in L.

For any long string, some nonterminal N must appear twice in the path.

Example: Consider $L = \{a^n b^n c^n : n \ge 1\}$. Show L is not a CFL.

• **Proof:** (by contradiction)

Assume L is a CFL and apply the pumping lemma.

Let m be the constant in the pumping lemma and consider $w = a^m b^m c^m$. Note |w| > m.

Show there is no division of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$, and $uv^ixy^iz \in L$ for i = 0, 1, 2, ...

Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a's and b's, then $uv^2xy^2z\notin \mathbb{L}$ since there will be b's before a's.

Thus, v and y can be only a's, b's, or c's (not mixed).

Case 2: $v = a^{t_1}$, then $y = a^{t_2}$ or b^{t_3} (|vxy| < m)

If $y = a^{t_2}$, then $uv^2xy^2z = a^{m+t_1+t_2}b^mc^m \notin L$ since $t_1 + t_2 > 0$, n(a)>n(b)'s (number of a's is greater than number of b's)

If $y = b^{t_3}$, then $uv^2xy^2z = a^{m+t_1}b^{m+t_3}c^m \notin L$ since $t_1 + t_3 > 0$, either n(a) > n(c)'s or n(b) > n(c)'s.

Case 3: $v = b^{t_1}$, then $y = b^{t_2}$ or c^{t_3}

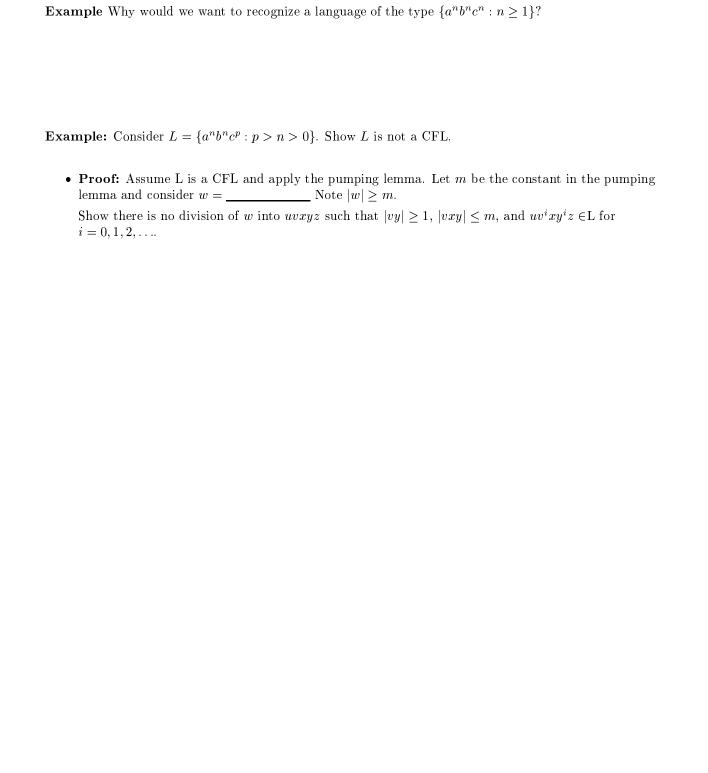
If $y = b^{t_2}$, then $uv^2xy^2z = a^mb^{m+t_1+t_2}c^m \notin L$ since $t_1 + t_2 > 0$, n(b)>n(a)'s.

If $y = c^{t_3}$, then $uv^2xy^2z = a^mb^{m+t_1}c^{m+t_3} \notin L$ since $t_1 + t_3 > 0$, either n(b) > n(a)'s or n(c) > n(a)'s.

Case 4: $v = c^{t_1}$, then $y = c^{t_2}$

then, $uv^2xy^2z = a^mb^mc^{m+t_1+t_2} \notin L \text{ since } t_1 + t_2 > 0, \text{ n(c)} > \text{n(a)'s}.$

Thus, there is no breakdown of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$ and for all $i \ge 0$, uv^ixy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.



is in L. Contradiction, thus, L is not a CFL. Q.E.D.

Thus, there is no breakdown of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$ and for all $i \ge 0$, uv^ixy^iz

Example: Consider $L = \{a^j b^k : k = j^2\}$. Show L is not a CFL.

• **Proof:** Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = \underline{\hspace{1cm}}$

Show there is no division of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$, and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$

Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a's and b's, then $uv^2xy^2z\notin \mathbb{L}$ since there will be b's before a's.

Thus, v and y can be only a's, and b's (not mixed).

Thus, there is no breakdown of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$ and for all $i \ge 0$, uv^ixy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.

Exercise: Prove the following is not a CFL by applying the pumping lemma. (answer is at the end of this handout).

Consider $L=\{a^{2n}b^{2p}c^nd^p:n,p\geq 0\}.$ Show L is not a CFL.

Example: Consider $L = \{w\bar{w}w : w \in \Sigma^*\}$, $\Sigma = \{a, b\}$, where \bar{w} is the string w with each occurrence of a replaced by b and each occurrence of b replaced by a. For example, w = baaa, $\bar{w} = abbb$, $w\bar{w} = baaaabbb$. Show L is not a CFL.

• **Proof:** Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = \underline{\hspace{1cm}}$ Show there is no division of w into uvxyz such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$

Thus, there is no breakdown of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$ and for all $i \ge 0$, uv^ixy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.

Example: Consider $L = \{a^n b^p b^p a^n\}$. L is a CFL. The pumping lemma should apply!

Let $m \ge 4$ be the constant in the pumping lemma. Consider $w = a^m b^m b^m a^m$.

We can break w into uvxyz, with:

If you apply the pumping lemma to a CFL, then you should find a partition of w that works!

Chap 8.2 Closure Properties of CFL's

Theorem CFL's are closed under union, concatenation, and star-closure.

• Proof:

Given 2 CFG
$$G_1 = (V_1, T_1, R_1, S_1)$$
 and $G_2 = (V_2, T_2, P_2, S_2)$

- Union:

Construct
$$G_3$$
 s.t. $L(G_3) = L(G_1) \cup L(G_2)$. $G_3 = (V_3, T_3, R_3, S_3)$

- Concatenation:

Construct
$$G_3$$
 s.t. $L(G_3) = L(G_1) \circ L(G_2)$.

– Star-Closure Construct
$$G_3$$
 s.t. $L(G_3) = L(G_1)^*$ $G_3 = (V_3, T_3, R_3, S_3)$

 ${\rm QED}.$

Theorem CFL's are NOT closed under intersection and complementation.

- Proof:
 - Intersection:

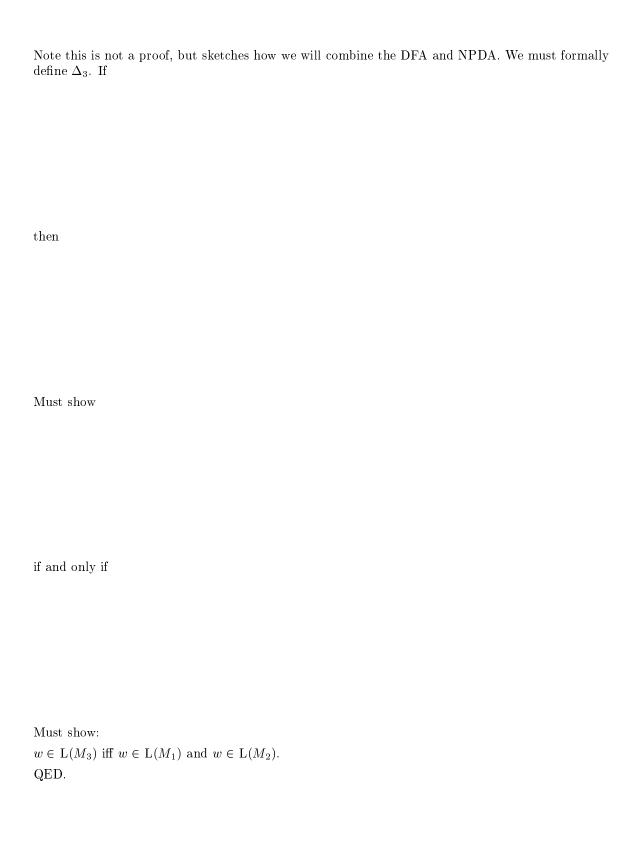
- Complementation:

Theorem: CFL's are closed under *regular* intersection. If L_1 is CFL and L_2 is regular, then $L_1 \cap L_2$ is CFL.

• **Proof:** (sketch) This proof is similar to the construction proof in which we showed regular languages are closed under intersection. We take a NPDA for L_1 and a DFA for L_2 and construct a NPDA for $L_1 \cap L_2$.

$$M_1=(Q_1,\Sigma,\,,\,,\Delta_1,q_0,z,F_1)$$
 is an NPDA such that $\mathcal{L}(M_1)=L_1.$ $M_2=(Q_2,\Sigma,\delta_2,q_0^{'},F_2)$ is a DFA such that $\mathcal{L}(M_2)=L_2.$

Example of replacing arcs (NOT a Proof!):



Questions about CFL:

1. Decide if CFL is empty?

2. Decide if CFL is infinite?

Example: Consider $L = \{a^{2n}b^{2m}c^nd^m : n, m \ge 0\}$. Show L is not a CFL.

• **Proof:** Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = a^{2m}b^{2m}c^md^m$.

Show there is no division of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$, and $uv^ixy^iz \in L$ for i = 0, 1, 2, ...

Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a's and b's, then $uv^2xy^2z\notin L$ since there will be b's before a's.

Thus, v and y can be only a's, b's, c's, or d's (not mixed).

Case 2: $v = a^{t_1}$, then $y = a^{t_2}$ or b^{t_3} (|vxy| < m)

If $y = a^{t_2}$, then $uv^2xy^2z = a^{2m+t_1+t_2}b^{2m}c^md^m \notin L$ since $t_1 + t_2 > 0$, the number of a's is not twice the number of c's.

If $y = b^{t_3}$, then $uv^2xy^2z = a^{2m+t_1}b^{2m+t_3}c^md^m \notin L$ since $t_1 + t_3 > 0$, either the number of a's (denoted $\mathbf{n}(a)$) is not twice $\mathbf{n}(c)$ or $\mathbf{n}(b)$ is not twice $\mathbf{n}(d)$.

Case 3: $v = b^{t_1}$, then $y = b^{t_2}$ or c^{t_3}

If $y = b^{t_2}$, then $uv^2xy^2z = a^{2m}b^{2m+t_1+t_2}c^md^m \notin L$ since $t_1 + t_2 > 0$, n(b) > 2*n(d).

If $y = c^{t_3}$, then $uv^2xy^2z = a^{2m}b^{2m+t_1}c^{m+t_3}d^m \notin L$ since $t_1 + t_3 > 0$, either n(b) > 2*n(d) or 2*n(c) > n(a).

Case 4: $v = c^{t_1}$, then $y = c^{t_2}$ or d^{t_3}

If $y = c^{t_2}$, then $uv^2xy^2z = a^{2m}b^{2m}c^{m+t_1+t_2}d^m \notin L$ since $t_1 + t_2 > 0$, 2*n(c) > n(a).

If $y = d^{t_3}$, then $uv^2xy^2z = a^{2m}b^{2m}c^{m+t_1}d^{m+t_3} \notin L$ since $t_1 + t_3 > 0$, either 2*n(c)>n(a) or 2*n(d)>n(b).

Case 5: $v = d^{t_1}$, then $y = d^{t_2}$

then $uv^2xy^2z = a^{2m}b^{2m}c^md^{m+t_1+t_2} \notin L$ since $t_1 + t_2 > 0$, 2*n(d)>n(c).

Thus, there is no breakdown of w into uvxyz such that $|vy| \ge 1$, $|vxy| \le m$ and for all $i \ge 0$, uv^ixy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.