CPS 140 - Mathematical Foundations of CS
Dr. S. Rodger
Section: Transforming Grammars (handout)

Methods for Transforming Grammars

We will consider CFL without €. It would be easy to add € to any grammar by adding a new start symbol
SO:

S()—)S|€

Definition: A production of the form A — Ax, AeV, xe(V U T)* is left recursive.

Example Previous expression grammar was left recursive.

E—-E+T|T
T - T«F | F
F->1I|(E)
I—-al|b

A top-down parser would want to derive the leftmost terminal as soon as possible. But in the left recursive
grammar above, in order to derive a sentential form that has the leftmost terminal, we have to derive a
sentential form that has other terminals in it.

Derivation of a+b-+a-+ta is:
E = E4+T = E+T+T = E+T+T+T = a+T+T+T

We will eliminate the left recursion so that we can derive a sentential form with the leftmost terminal and
no other terminals.

Theorem (Removing Left recursion) Let G=(V,T,R,S) be a CFG. Divide productions for variable A into
left-recursive and non left-recursive productions:

A > Az | Ay | ... | Az
A= yily]- - lym

where z;, y; are in (V U T)*.

Then G’=(VU{Z}, T, R’, S) and R’ replaces rules of form above by

A = ylyiZ,i=1,2,...m
7 — xt|th7 i=1,2,...,n

Example:
E = E+T|T becomes
T — T«F|F becomes

Now, Derivation of a+b+a+a is:



Useless productions

S — aB | bA
A —aA

B—Sala
C—cBcla

Theorem (useless productions) Let G be a CFG. Then 3 G’ that does not contain any useless variables or
productions s.t. L(G)=L(G’).

To Remove Useless Productions:
Let G=(V,TR,S).

I. Compute V;={Variables that can derive strings of terminals}

1. Vlz(l)
2. Repeat until no more variables added
e For every A€V with A—z120...2,, 2; €(T* UV;), add A to V;

3. Ry = all productions in R with symbols in (V; U T)*

Then G1=(V1,T,R1,S) has no variables that can’t derive strings.
II. Draw Variable Dependency Graph
For A — xBy, draw A—B.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G’
is s.t. L(G)=L(G’) and G’ has no useless productions.

Theorem (remove € productions) Let G be a CFG with € not in L(G). Then 3 a CFG G’ having no
e-productions s.t. L(G)=L(G).

To Remove e-productions

1. Let V;, = {A | 3 production A—e }

2. Repeat until no more additions
e if BoA1A,...A,, and A;€ V, for all ¢, then put B in V,
3. Construct G’ with productions R’ s.t.

o If A— x1@ ... 2, €R, m > 1, then put all productions formed when z; is replaced by € (for all
xj € V) s.t. |rhs| > 1 into R.

Example:

S — Ab

A -5 BC | Aa
B—ble
C—cCle



Definition Unit Production
A—B

where A B €V.
Consider removing unit productions:
Suppose we have

A—-B becomes
B —a]ab

But what if we have

A—-B becomes
B—C
C— A

Theorem (Remove unit productions) Let G=(V,T,R,S) be a CFG without e-productions. Then 3 CFG
G’=(V’, T’ ,R’,S’) that does not have any unit-productions and L(G)=L(G’).

To Remove Unit Productions:

1. Find for each A, all B s.t. A =B (Draw a dependency graph)
2. Construct G’=(V’,T’,R’,S’) by

(a) Put all non-unit productions in R’

(b) For all ASB s.t. B=y1|y2|...yn € R, put A=yi|ya|...yn € R’

Theorem Let L be a CFL that does not contain e. Then 3 a CFG for L that does not have any useless
productions, e-productions, or unit-productions.

Proof

1. Remove e-productions
2. Remove unit-productions

3. Remove useless productions

Note order is very important. Removing e-productions can create unit-productions! QED.

Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form
A—-BC orA—a

where A B,CeV and a€T.



Theorem: Any CFG G with e not in L(G) has an equivalent grammar in CNF.

Proof:

1. Remove e-productions, unit productions, and useless productions.

2. For every rhs of length > 1, replace each terminal z; by a new variable C'; and add the production
Cj — T

3. Replace every rhs of length > 2 by a series of productions, each with rhs of length 2. QED.

Example:

S — CBcd
B—b
C—Ccle

Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

A— ax

where a€T and xeV*

Theorem For every CFG G with € not in L(G), 3 a grammar in GNF.



