CPS 140 - Mathematical Foundations of CS Dr. Susan Rodger Section: Introduction (Ch. 1) (handout)

Power of Machines

automata	Can do?	Can't do?		
FA	$_{ m integers}$	arith expr		
PDA	arith expr	compute expr		
TM	compute expr	decide if halts		

Applications

Compiler

• Question: C++ program - is it valid?

• Question: language L, program P - is P valid?

Stages of a Compiler

assembly language program

Set Theory - Read Chapter 1

A Set is a collection of elements.

$$A = \{1,4,6,8\}, B = \{2,4,8\}, C = \{3,6,9,12,...\}, D = \{4,8,12,16,...\}$$

- (union) $A \cup B =$
- (intersection) $A \cap B =$
- $C \cap D =$
- (member of) $42 \in \mathbb{C}$?
- (subset) $B \subset C$?
- $B \cap A \subseteq D$?
- (product) $A \times B =$
- |B|=
- $\emptyset \in B \cap C$?
- (powerset) $2^B =$

Example

Prove: Set S has $2^{|S|}$ subsets.

S	number of subsets
0	
1	
2	
3	
4	

Technique: Proof by Induction

- 1. Basis: P(1)? Prove smallest instance is true.
- 2. Induction Hypothesis I.H.

Assume P(n) is true for 1,2,...,n

3. Induction Step - I.S.

Show P(n+1) is true (using I.H.)

Proof of Example:

- 1. Basis:
- 2. I.H. Assume
- 3. I.S. Show

Definition : An infinite set is countable if its elements have 1-1 correspondence with the positive integers.

Examples:

- S = { positive odd integers }
- $S = \{ \text{ real numbers } \}$
- $S = \{(i,j) \mid i,j>0, \text{ are integers}\}$

Theorem Let S be an infinite countable set. Its powerset 2^S is not countable.

Proof - Diagonalization

• S is countable, so it's elements can be enumerated.

$$S = \{s_1, s_2, s_3, s_4, s_5, s_6 \dots\}$$

An element $t \in 2^S$ can be represented by a sequence of 0's and 1's such that the *i*th position in *t* is 1 if s_i is in t, 0 if s_i is not in t.

Example, $\{s_2, s_3, s_5\}$ represented by

Example, set containing every other element from S, starting with s_1 is $\{s_1, s_3, s_5, s_7, \ldots\}$ represented by

Suppose 2^S countable. Then we can emunerate all its elements: $t_1, t_2,$

	s_1	s_2	s_3	s_4	s_5	s_6	s ₇	
t_1	0	1	0	1	0	0	1	
t_2	1	1	0	0	1	1	0	
t_3	0	0	0	0	1	0	0	
t_4	1	0	1	0	1	1	0	
t_5	1	1	1	1	1	1	1	
t_6	1	0	0	1	0	0	1	
t_7	0	1	0	1	0	0	0	

3 Major Concepts

- languages
- grammars
- automata

Languages

- string finite sequence of symbols
- language set of strings defined over Σ

Examples

- $\begin{array}{l} \bullet \ \, \Sigma {=} \{a,b\} \\ \mathrm{L} {=} \{a^n b^n \mid n > 0\} \end{array}$

Notation

- symbols in alphabet: a, b, c, d, ...
- \bullet string names: u,v,w,...

Definition of concatenation

Let
$$w=a_1a_2...a_n$$
 and $v=b_1b_2...b_m$

See book for formal definitions of other operations.

String Operations

strings: w=abbc, v=ab, u=c

 $\bullet \;$ size of string

$$|\mathbf{w}| + |\mathbf{v}| =$$

 \bullet concatenation

$$v^3 = vvv = v \circ v \circ v =$$

- $v^0 =$
- $\mathbf{w}^R =$
- $|\mathbf{v}\mathbf{v}^R\mathbf{w}| =$
- ab $\epsilon =$

Definition

 $\Sigma^* = \operatorname{set}$ of strings obtained by concatenating 0 or more symbols from Σ

Example

$$\Sigma = \{a, b\}$$

$$\Sigma^* \,=\,$$

$$\Sigma^+\,=\,$$

Examples

 $\Sigma = \{a, b, c\}, L_1 = \{ab, bc, aba\}, L_2 = \{c, bc, bcc\}$

- $L_1 \cup L_2 =$
- $L_1 \cap L_2 =$
- $\overline{L_1} =$
- $\overline{L_1 \cap L_2} =$
- $L_1 \circ L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\} =$

Definition

$$L^0 = \{\epsilon\}$$

$$L^2 = L \circ L$$

$$L^3 = L \circ L \circ L$$

$$L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \dots$$

$$L^+ = L^1 \cup L^2 \cup L^3 \dots$$

Example Is L a countable set?

$$S = \{w \in \Sigma^+\}, \Sigma = \{a, b\}$$

Regular Expressions

Method to represent strings in a language

- + union (or)
- concatenation (AND) (can omit)
- * star-closure (repeat 0 or more times)

Example:

$$(a+b)^* \circ a \circ (a+b)^*$$

Example:

 $(aa)^*$

Definition Given Σ ,

- 1. $\emptyset \epsilon, a \in \Sigma \text{ are R.E.}$
- 2. If r and s are R.E. then
 - r+s is R.E.
 - rs is R.E.
 - r* is R.E.
- 3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: L(r) = language denoted by R.E. r.

- 1. \emptyset , $\{\epsilon\}$, $\{a\}$ are L denoted by a R.E.
- 2. if r and s are R.E. then
 - (a) $L(r+s) = L(r) \cup L(s)$
 - (b) $L(rs) = L(r) \circ L(s)$
 - (c) $L((r)^*) = (L(r)^*)$

Precedence Rules

- * highest
- 0
- +

Example:

$$ab^* + c =$$

Examples:

- 1. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}.$
- 2. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than 3 } a$'s and must end in $ab\}$.
- 3. Regular expression for positive and negative integers

Grammars

grammar for english

```
<sentence> \rightarrow <subject><verb><d.o.> <subject> \rightarrow <noun> | <article><noun> <verb> \rightarrow hit | ran | ate <d.o.> \rightarrow <article><noun> <trible> <noun> \rightarrow Fritz | ball <article> \rightarrow the | an | a
```

Examples

Fritz hit the ball.

The ball hit Fritz.

The ball ate the ball

Syntactically correct?

Semantically correct?

Grammar

G = (V,T,S,P) where

- V variables (or nonterminals)
- \bullet T terminals
- S start variable $(S \in V)$
- P productions (rules) $x{\to} y \text{ "means" replace } x \text{ by } y$ $x{\in}(V{\cup}\ T)^+,\ y{\in}(V{\cup}T)^*$ where V, T, and P are finite sets.

Definition

 $w \Rightarrow z \quad w \text{ derives } z$

 $w \stackrel{*}{\Rightarrow} z$ derives in 0 or more steps

 $\mathbf{w} \stackrel{\pm}{\Rightarrow} \mathbf{z}$ derives in 1 or more steps

Definition

$$G = (V,T,P,S)$$

$$L(G) = \{ w \in T^* \mid S \stackrel{*}{\Rightarrow} w \}$$

Example

$$G = (\{S\}, \{a,b\}, S, P)$$

$$P = \{S \rightarrow aaS, S \rightarrow b\}$$

$$L(G) =$$

Example

$$L(G) = \{a^n ccb^n \mid n > 0\}$$

$$G =$$

Automata

Abstract model of a digital computer

