CPS 140 - Mathematical Foundations of CS

Dr. S. Rodger
Section: Turing Machines (handout)

Review

Regular Languages

- FA, RG, RE
- recognize

Context Free Languages

- PDA, CFG
- recognize

DFA:

Turing Machine:

Turing Machine (TM)

- invented by Alan M. Turing (1936)
- computational model to study algorithms

Definition of TM

- Storage
- tape
- actions
- write symbol
- read symbol
- move left (L) or right (R)
- computation
- initial configuration
* start state
* tape head on leftmost tape square
* input string followed by blanks
- processing computation
* move tape head left or right
* read from and write to tape
- computation halts
* final state

Formal Definition of TM

A TM M is defined by $\mathrm{M}=\left(\mathrm{K}, \Sigma,,, \delta, q_{0}, \mathrm{~B}, \mathrm{~F}\right)$ where

- K is finite set of states
- Σ is input alphabet
- , is tape alphabet
- $\mathrm{B} \in$, is blank
- q_{0} is start state
- F is set of final states
- δ is transition function
$\delta(\mathrm{q}, \mathrm{a})=(\mathrm{p}, \mathrm{b}, \mathrm{R})$ means "if in state q with the tape head pointing to an 'a', then move into state p, write a 'b' on the tape and move to the right".

TM as Language recognizer

Definition: Configuration is denoted by \vdash.
if $\delta(\mathrm{q}, \mathrm{a})=(\mathrm{p}, \mathrm{b}, \mathrm{R})$ then a move is denoted

$$
\text { abaqabba } \vdash \text { ababpbba }
$$

Definition: Let M be a $\mathrm{TM}, \mathrm{M}=\left(\mathrm{K}, \Sigma,,, \delta, q_{0}, \mathrm{~B}, \mathrm{~F}\right) . \mathrm{L}(\mathrm{M})=\left\{w \in \Sigma^{*} \mid q_{0} w \stackrel{*}{\vdash} x_{1} q_{f} x_{2}\right.$ for some $q_{f} \in \mathrm{~F}$, $\left.x_{1}, x_{2} \in,{ }^{*}\right\}$

TM as language acceptor

M is a TM, w is in Σ^{*},

- if $w \in L(M)$ then M halts in final state
- if $\mathrm{w} \notin \mathrm{L}(\mathrm{M})$ then either
- M halts in non-final state
- M doesn't halt

Example:

$\mathrm{L}=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$
Is the following TM correct?

TM as a transducer
TM can implement a function: $f(w)=w$,

start with:	w
	\uparrow
end with:	w'

Definition: A function with domain D is Turing-computable or computable if there exists TM $\mathrm{M}=\left(\mathrm{K}, \Sigma,,, \delta, q_{0}, \mathrm{~B}, \mathrm{~F}\right)$ such that

$$
q_{0} w \stackrel{*}{\vdash} q_{f} f(w)
$$

$q_{f} \in \mathrm{~F}$, for all $w \in \mathrm{D}$.

Example:

$\mathrm{f}(\mathrm{x})=2 \mathrm{x}$
x is a unary number

start with:	111 \uparrow
end with:	111111 \uparrow

Is the following TM correct?

Example:

$\mathrm{L}=\left\{w w \mid w \in \Sigma^{+}\right\}, \Sigma=\{a, b\}$

