On Multiple Semantics for
Declarative Database Repairs

Amir Gilad Daniel Deutch Sudeepa Roy
Tel Aviv University Tel Aviv University Duke University
amirgilad@mail.tau.ac.il danielde@post.tau.ac.il sudeepa@cs.duke.edu
ABSTRACT 1 INTRODUCTION

We study the problem of database repairs through a rule-
based framework that we refer to as Delta Rules. Delta rules
are highly expressive and allow specifying complex, cross-
relations repair logic associated with Denial Constraints,
Causal Rules, and allowing to capture Database Triggers of
interest. We show that there are no one-size-fits-all seman-
tics for repairs in this inclusive setting, and we consequently
introduce multiple alternative semantics, presenting the case
for using each of them. We then study the relationships
between the semantics in terms of their output and the com-
plexity of computation. Our results formally establish the
tradeoff between the permissiveness of the semantics and its
computational complexity. We demonstrate the usefulness
of the framework in capturing multiple data repair scenarios
for an academic search database and the TPC-H databases,
showing how using different semantics affects the repair in
terms of size and runtime, and examining the relationships
between the repairs. We also compare our approach with
SQL triggers and a state-of-the-art data repair system.

KEYWORDS

Database Constraints, Provenance, Repairs, Triggers

ACM Reference Format:

Amir Gilad, Daniel Deutch, and Sudeepa Roy. 2020. On Multiple
Semantics for Declarative Database Repairs. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data
(SIGMOD’20), June 14—19, 2020, Portland, OR, USA. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3318464.3389721

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06...$15.00
https://doi.org/10.1145/3318464.3389721

The problem of data repair has been extensively studied
by previous work [5, 6, 10, 11, 19, 44]. Many of these have
focused on the desideratum of minimum cardinality, i.e., re-
pairing the database while making the minimum number
of changes [5, 19, 34]. In particular, when the repair only
involves tuple deletion [10, 33, 34], this desideratum takes
center stage since a néive repair could simply delete the en-
tire database in order to repair it. Such repairs are commonly
used with classes of constraints such as Denial Constraints
(DCs) [10, 11], SQL deletion triggers [22], and causal depen-
dencies [46].

Different scenarios, however, may require different inter-
pretations of the constraints and the manner in which they
should be used to achieve a minimum repair. For integrity
constraints such as DCs, when there is a set of tuples vio-
lating such a DC, any tuple in that set is a ‘candidate for
deletion’ to repair the database. Moreover, if we allow such
constraints to be influenced by deleted tuples, as needed in
cascade deletions, the problem becomes more convoluted.

In contrast, for violations of referential integrity con-
straints under cascade delete semantics, or other complex
and user-defined constraints as in SQL triggers and in causal
dependencies, there is a specific tuple that is meant to be
deleted if a trigger or a rule is satisfied. Nevertheless, if there
are several triggers or causal rules, all satisfied at the same
time, it remains largely unspecified and varies from system to
system in what order they should be fired and when should
the database be updated. For instance, by default, MySQL
chooses to fire triggers in the order they have been created
[40], and PostgreSQL fires triggers in alphabetical order in
such scenarios [42]. This may lead to different answers leav-
ing users uncertain about why the tuples have been deleted.
These systems offer an option of specifying the order in
which the triggers would fire; however, this order does not
guarantee a consistent semantics that leads to a minimum
repair. Such constraints may also follow several different se-
mantics in the process of cascading deletions. Therefore, the
same set of constraints may be assigned different reasonable
semantics that lead to different minimum repairs, and each
choice of semantics may be suitable for a different setting.

https://doi.org/10.1145/3318464.3389721
https://doi.org/10.1145/3318464.3389721

ExampLE 1.1. Consider the database in Figure 1 based on
an academic database [35]. It contains the tables Grant (grant
foundations), Author (paper authors), AuthGrant (a relation-
ship of authors and grants given by a foundation), Pub (a pub-
lication table), Writes (a relationship table between Author
and Pub), and Cite (a citation table of citing and cited re-
lationships). For each tuple, we also have an identifier on
the leftmost column of each table (e.g., ag, is the identifier
of AuthGrant(2, 1)). Consider the following four constraints
specifying how to repair the tables (there could be other rules
capturing different repair scenarios):

(1) IfaGrant tuple is deleted and there is an author who won

a grant by this foundation, denoted as an AuthGrant
tuple, then delete the winning author.

(2) If an Author tuple is deleted and the corresponding
Writes and Pub tuples exist in the database, delete the
corresponding Writes tuple (as in cascade delete seman-
tics for foreign keys).

(3) Under the same condition as above, delete the correspond-
ing Pub tuple (not standard foreign keys, but suggesting
that every author is important for a publication to exist).

(4) If a publication p from the Pub table is deleted, and is
cited by another publication c, while some authors of
these papers still exist in the database, then delete the
Cite tuple'.

Suppose we are analyzing a subset of this database containing
only authors affiliated with U.S. schools and only papers written
solely by U.S. authors. ERC grants are given only to European
institutions and its Grant tuple was incorrectly added to the
U.S. database, so this tuple g, needs to be deleted. However, this
deletion causes violations in the above constraints. To repair
the database based on these constraints, we could proceed in
various ways: considering the semantics of triggers and causal
rules, we can delete tuples ay, Wy, p1, as, Wa, pz and c, and
regain the integrity of the database but at the cost of deleting
seven tuples. A different approach is to delete a, and either
Wy or p1, and delete as and either w, or py, which would only
delete four tuples. However, if we consider the semantics of DCs,
we could delete any tuple out of the set of tuples that violates
the constraint. So, we can just delete the tuples ag,, ags. This
would satisfy the first constraint and thus the second, third and
fourth constraints will also be satisfied.

Our Contributions

In this paper, we propose a novel unified constraint specifi-
cation framework, with multiple alternative semantics that
can be suitable for different settings, and thus can result in

1 An alternative version of this constraint is not conditioned by the existence
of the paper authors, however, the condition is added to demonstrate a
difference between the semantics in our framework

different ‘minimum repairs’. Our framework allows for se-
mantics similar to DCs as well as causal rules, and the subset
of SQL triggers that delete tuple(s) after another deletion
event, and is geared toward minimum database repair using
tuple deletions.

Grant AuthGrant Author
T T name aid | gid aid name
z gl NSF ag; 2 1 ap 2 Maggie
g} 3 ERC ag, 4 2 ap 4 Marge
2 ags 5 2 as 5 Homer
Cite Writes Pub
— - aid | pid pid | title
: S R P
-“ Wa 5 7 P2 7 y

Figure 1: Academic database instance D

(@) Acrant(g, n) :- Grant(g, n), n=°‘ERC’
(1) Anuthor(a, n) :- Author(a, n), AuthGrant(a, g), Acrant(g, gn)
(2) Apuw(p,t) :- Pub(p, t), Writes(a, p), Aputhor(a, n)
(3) Awrites(a, p) :- Pub(p, t), Writes(a, p), Anuthor(a, 1)
(4) Acite(c,p) - Cite(c, p), Apub(p, t), Writes(ay, c),
Writes(az, p)
Figure 2: Delta program

Delta rules and stabilizing sets. We begin by defining
the concept of delta rules. Delta rules allow for a deletion
of a tuple from the database if certain conditions hold. In-
tuitively, delta rules are constraints specifying conditions
that, if satisfied, compromise the integrity of the database.
A stabilizing set is a set of tuples whose removal from the
database ensures that no delta rules are satisfied.

ExXAMPLE 1.2. Reconsider Example 1.1 where the constraints
are specified verbatim. We can formalize them in our declar-
ative syntax, as shown in Figure 2. Rules (1), (2), (3), and (4)
express the constraints in Example 1.1, respectively. For ex-
ample, rule (3) states that if a Pub and a Writes tuples ex-
ist in the database, and the corresponding Author tuple has
been deleted (the Aaythor(a, n) atom), then delete the Pub tu-
ple (this is the head of the rule). Rule (0) initializes the dele-
tion process (more details about this in Section 3). In Exam-
ple 1.1, {g3,a;, a3, W1, Wy, P1, P2, C}, {82, a2, a3, Wy, W2, P1, P2},
{g2, a2, a3, w1, w2}, and {g2, ag,, ags} are all stabilizing sets,
as a removal of any of these sets of tuples and an addition of
these tuples to the delta relations ensure that no delta rules are
satisfied.

Although we can easily verify that the deletion of any
set of tuples in Example 1.2 guarantees that the database is
‘stable’, it may not be immediately obvious under what sce-
narios we would obtain these sets as the answer, or whether
they correspond to some notion of ‘optimal repair’.

Semantics of delta rules. To address this, we define
four semantics of delta rules and define the minimum repair
according to these. A semantics in this context implies a
manner in which we interpret the rules, either as integrity
constraints for which we define a global minimum solution,
or as means of deriving tuples in different ways. Independent
semantics aims at finding the globally optimum repair such
that none of the rules are satisfied on the entire database
instance. It is similar to optimal repair in presence of DCs like
violations of functional dependencies [10], but delta rules
capture more general propagations of conflict resolutions,
where deleting one tuple to resolve a conflict may lead to
deletion of another tuple. Step semantics, is geared towards
the semantics of the aforementioned subset of SQL triggers
and causal rules, and is a fine-grained semantics. It evaluates
one rule at a time (non-deterministically) and updates the
database immediately by removing the tuple, which may in
turn lead to further tuple deletions. Stage semantics also aims
to capture triggers and causal rules. However, as opposed to
step semantics, it deterministically removes tuples in stages.
In particular, it evaluates all delta rules based on the stage
of the database in the previous round, and therefore the
order of firing the rules does not matter (similar to seminéaive
evaluation of datalog [4]). Finally, end semantics is similar
to the standard datalog evaluation, where all possible delta
tuples are first derived and the database is updated at the
end of the evaluation process. We use end semantics as a
baseline for the other semantics.

ExampLE 1.3. Continuing Example 1.2, the re-
sults corresponding to different semantics are
End(P,D) = {g2,az, a3, W, Wz, P1,P2,C}, Stage(P,D) =
{82, @z, a3, w1, w2, p1, P2}, Step(P,D) = {g2,a2,a3, Wi, w2},
and Ind(P,D) = {g;,agy,ags}. We detail the formal
definitions of the semantics in Section 3.

Relationships between the results of different se-
mantics. We study the relationships of containment and
size between the results according to the four semantics. The
results are summarized in Figure 3, where the size of the
result of independent semantics is always smaller or equal to
the sizes of the results of stage and step semantics. We show
there are case where the result of step semantics subsumes
the result of stage semantics and vice-versa.

Complexity of finding the results We show that find-
ing the result for stage and end semantics is PTIME, while
finding the result for step and independent semantics is NP-
hard (also shown in Figure 3). For independent semantics,
we devise an efficient algorithm using data provenance, lever-
aging a reduction to the min-ones SAT problem [31]. We
store the provenance [25] as a Boolean formula and find a
satisfying assignment that maps the minimum number of
negated variables to True. For step semantics, we also devise

Stage Step

(PTime) o L /(NP-hard)

Independent
(NP-hard)
Figure 3: Complexity and relationships among the dif-
ferent semantics by size and containment

an efficient algorithm based on the structure of the prove-
nance graph, traversing it in topological order and choosing
tuples for the result set as we go.

Experimental evaluation. We examine the perfor-
mance of our algorithms for a variety of programs with
varying degree of complexity on an academic dataset [35]
and the TPC-H dataset [50]. We measure the performance
in terms of subsumption relationship between the results
computed under different semantics, the size of these results,
the execution time of each algorithm to compute the result
for every semantics. Finally, for our heuristic algorithms, we
break down the execution time in the context of multiple
“classes” of programs. We also compare our approach to SQL
triggers in PostgreSQL and MySQL, and to HoloClean [44].

2 PRELIMINARIES

We start by reviewing basic definitions for databases and
non-recursive datalog programs. A relational schema is a
tuple R = (Ry, ..., Rx) where R; is a relation name (or atom).
Each relation R; (i = 1 to k) has a set of attributes A;, and
we use A = U;A; to denote the set of all attributes in R.
For any attribute A € A, dom(A) denotes the domain of A. A
database instance D is a finite set of tuples over R, and we
will use Ry, - - - , Rk to denote both the relation names and
their content in D where it is clear from the context.

Non-recursive datalog. @ We will use standard
datalog program comprising rules of the form
oX) = T;,(Yi),...,T;,(Y;,), where Yj,---,Y;, con-
tain variables or constants, and X is a subset of the variables
in Uj;lYij. In this rule, Q is called an intensional (or derived)
relation, and T;’s are either intensional relations or are
extensional (or base) relations from R. For brevity, we use
the notations body(Q) for the set {T;,(Y1),...,T;,(Yi,)},
and head(Q) for Q(X). A datalog program is simply a
set of datalog rules. In this paper, we consider programs
P ={ry,...,rm} such that for some i, j, the relation name of
head(r;) is an element in body(r;), but P is equivalent to a
non-recursive program. These are called bounded programs
and are not inherently recursive [4].

Let D be a database and Q(X) :— T;,(Y;,), ..., T;,(Yi,)
be a datalog rule, both over the schema R (i.e., VR; €
body(Q). R; € R). An assignment to Q is a function « :

body(Q) — D that respects relation names. We require that
a variable y; will not be mapped to multiple distinct val-
ues, and a constant y; will be mapped to itself. We define
a(head(Q)) as the tuple obtained from head(Q) by replacing
each occurrence of a variable x; by a(x;).

Given a database D and a datalog program P, we say that
it has reached a fixpoint if no more tuples can be added to
the result set using assignments from D to the rules of P.
The fixpoint, denoted by P(D), is then the database obtained
by adding to D all tuples derived from the rules of P.

ExampLE 2.1. Consider the database D in Figure 1 and the
program P in Figure 2, and consider for now all A relations as
standard intensional relations. When the rules are evaluated
over the database, after deriving Agrant(2, ERC) from rule (0),
we have two assignments to rule (1): oy, az, where a; (az) maps
the first, second and third atoms to a; (as), ag, (ags), and
Acrant (2, ERC) respectively, which generate Apythor (4, Marge)
and Apythor (5, Homer). Next we have two assignments to rule
(2): as, aq, where as (as) maps the first, second and third atoms
topz (p3), w1 (W2), and Apytnor (4, Marge) (Aauthor(5, Homer))
respectively. The fixpoint of this evaluation process is the
database P(D) = D U {Agrant(2, ERC), Apythor (4, Marge),
Anuthor (5, Homer), Ayrites(4, 6), Aurites(5, 7), Apub(6, X),
Apub(7,Y), Acite(7,6)}. This evaluation corresponds to end
semantics as discussed later.

3 FRAMEWORK FOR DELTA RULES

We now formulate the model used in the rest of the paper.

3.1 Delta Relations, Rules, and Program

Delta Relations. Given a schema R = (R4, ..., Ry) where
R; has attributes A;, the delta relations A = (Aq,...,Ay)
will be used to capture tuples to be deleted from Ry,Rg
respectively. Therefore, each relation A; has the same set
of attributes A; (the ‘full’ notation for A; is Ag,, but we
abbreviate it).

Delta rules and program. A delta program is a datalog
program where every intensional relation is of the form A;
for some i.

DEFINITION 3.1. Given a schemaR = (Ry,...,Ry) and the
corresponding delta relations A = (A1, . .., Ay), a delta rule is
a datalog rule of the form A;(X) :— Ri(X), Q1(Y1), ..., Q1(Y})
where Q; € RUA.

Intuitively, the condition Q; € RUA means that delta rules
can have cascaded deletions when some of the other tuples
are removed. Note that the same vector X that appears in the
head A;, also appears in the body in the atom with relation
R;. This is because we need the atom R;(X) in the body of
the rule so that we only delete existing facts. Also, Y; can

intersect with X and any other Y;. We will refer to a set of
delta rules as a delta program.

ExampLE 3.2. Consider rule (2) in Figure 2. This rule is
meant to delete any Pub tuple after its Author tuple has been
deleted, intuitively saying that if an author of a paper was
deleted, then her associated papers should be deleted as well.
We have Apyn(p, t) in the head of the rule and in the body we
have the atom Pub(p, t) to make sure the deleted tuple exists
in the database and we have a join between the Pub atom and
the Aauthor(a, n) atom using the atom Writes(a,p).

Overloading notation, we shall use A also as a mapping
from any subset of tuples in R to A in the instance D. For
instance, for two tuples from Ry, Ry as S = {R;(a), Rx(b)}, we
will use A(S) to denote A;(a) and A,(b) suggesting that these
two tuples have been deleted.

3.2 Independent Semantics

This non-operational ‘ideal’ semantics captures the intuition
of a minimum-size repair: the smallest set of tuples that need
to be removed so that all the constraints are satisfied. Note
that whenever we delete a tuple, we add the corresponding
delta tuple. Hence the following definition:

DEFINITION 3.3. Let D and P respectively be a database
instance and a delta program over the schema R, A. The result
of independent semantics, denoted Ind(P, D), is the smallest
subset of non-delta tuples S C D such that in (D \ S) U A(S)
there is no satisfying assignment for any rule of P.

Note that there may be multiple minimum size sets satis-
fying the criteria, in which case the independent semantics
will non-deterministically output one of them. Proposition
3.18 shows that there is always a result for this semantics.

Grant AuthGrant Author
fid | name [aid T fid | aid name
g | 1 | NSF ag, | 2 | 1 a; | 2 | Maggie
g | 2 ERC a | 4 Marge
as 5 Homer
Cite Writes Pub
iti i aid | pid pid | title
_ - SRR
W3 5 7 P2 7 vy

Figure 4: The database instance D after applying the
rules in Figure 2 with the different semantics (not
showing delta relations). The tuple g, is always deleted
and added to the delta relation. Tuples of a certain
color are deleted from the original relations and
added to the delta relations. (1) Independent seman-
tics deletes the gray and cyan tuples. (2) Step semantics
deletes the gray and green tuples. (3) Stage semantics
deletes the gray, green and pink tuples. (4) End seman-
tics deletes the gray, green, pink, and orange tuples
and adds them to the delta relations

ExAMPLE 3.4. Consider the database in Figure 1 and the
rules shown in Figure 2. The result of independent semantics
is {g2, ag,, ags} and the final state of the database appears in
Figure 4, where the gray and cyan colored tuples are deleted
from the original relations and added to the delta relations. Note
that in the state depicted in Figure 4, there are no satisfying
assignments to any of the rules in Figure 2.

3.3 Step Semantics

This semantics offers a non-deterministic fine-grain rule ac-
tivation similar to the fact-at-a-time semantics for datalog in
the presence of functional dependencies [2, 3]. We denote the
state of the database at step t by D' = {Ri}, A’ = {Al},i=1
to m, and inductively define step semantics as follows.

DEFINITION 3.5. Let D and P be a database and a delta pro-
gram over schema R U A. In step semantics, at stept = 0, we
have A} = 0 and R! = the relation R in D. For each step
t > 0, make a non-deterministic choice of an assignment
a : body(r) — D' to a ruler € P such that head(r) = A;(X),
tup = a(head(r)), and update AI*' «— A! U {tup}, and
RI*Y = REN AL Forj # i, A"« Al and Ri*' « R}
The result of step semantics Step(P, D) is a minimum size set
of non-delta tuples S, such that S = D° \ D! and D' = D'*!,

The result of step semantics is then the minimum possible
number of tuples that are deleted by a sequence of single rule
activations. If there is more than one sequence that results
in a minimum number of derived delta tuples, step seman-
tics non-deterministically outputs one of the sets of tuples
associated with one of the sequences. Step semantics has
two uses: (1) simulate a subset of SQL triggers (“delete after
delete”) to determine the logic in which they will operate in
case there is a need for each trigger to operate separately
and immediately update the table from which it deleted a
tuple and then evaluate whether another trigger needs to
operate (similar to row-by-row semantics, but for multiple
triggers), and (2) DC-like semantics can also be simulated
with this semantics (see paragraph at the end of this section).

ExAMPLE 3.6. Reconsider the example in Figures 1 and 2.
We demonstrate a sequence of rule activations that results in
the smallest set of deleted tuples in step semantics.

(1) At step t = 1, there is one satisfying assignments to
rule (0) that derives A(gz). We update AL, = {g2}.
Grant! = {g{}.

(2) At step t = 2, there are two satisfying assignments to
rule (1). We choose the assignment deriving A(az), and

update D' so that A% ., = = {a;}, Author? = {a;,as}.
(3) In step t = 3, we have three satisfying assignments: to
rules (1), (2), and (3). Suppose we choose the one satis-
fying rule (1) and derive A(a3). D? is now updated such

that A3 ., = {ap,as}, Author® = {a;}.

(4) In step t = 4, there are two assignments to rule (2) and
two to rule (3). We choose the one deriving A(w;) and

update D* with Aﬁ,rites = {w;}, Writes* = {w,}. Note
that in the next step, the assignment to rule (3) deriving
A(p1) will not be possible due to this update.

(5) In stept = 5, there is an assignment to rule (2) and two
assignments to rule (3). We choose the one deriving A(ws)

and update D* with Aa/rites = {w;, W}, Writes® = 0.

The result for this example is depicted in Figure 4 where the

gray and green tuples are deleted from the original relations

and added to the delta relations.

3.4 Stage Semantics

Stage semantics separates the evaluation process into stages
so at each stage we employ all satisfying assignments to
derive all possible tuples, and update the delta relations and
the original relations (after all possible tuples are found).
At each stage t of evaluation (similarly to the semi-néive
algorithm [4]), we compute all tuples for A; relations and
update the relations R; in this stage by R} = Ri™1\ AL

DEFINITION 3.7. Let D and P be a database and a delta
program over the schema R U A, respectively. According to
stage semantics, at stage t = 0, A} = 0 and R! is the relation
R; in D. For each stage t > 0, Al — AI™" U {tup | tup =
a(head(r)),r € P,a[body(r)] € D1, « : body(R) — D'},
and R « R!™'\ Al. The result of stage semantics, denoted
Stage(P, D), is the set of non-delta tuples S, such that S =
D\ D! and D! = D**1,

This semantics can be used to simulate a subset of SQL
triggers to determine the logic in which they will operate in
case there is a need for several stages of deletions of tuples,
i.e., the triggers lead to a cascade deletion.

ExAMPLE 3.8. Reconsider the database in Figure 1 and the
rules in Figure 2. Assume we want to perform cascade dele-
tion through triggers such that a deletion of the Author tuple
including the Grant tuple including ERC will delete its recipi-
ents’ Author tuples, and the latter will result in the deletion of
the associated Writes and Pub tuples. The following describes
the operation of stage semantics simulating this process:

(1) At the first stage, there is one assignments to rule (0)

deriving A(g), we update Agrant = {82}, Grant = {g1}.

(2) At the second stage, we use the two assignments to rule

(1) to derive A(az) and A(as). We update the database
so that Author = {a;}, Aauthor = {a2,a3}.

(3) In the next stage, we use the two assignments to rule (2)

and the two assignments to rule (3) to derive A(p1), A(p2),
A(wy) and A(wy), and update the database asWrites =
0, Pub = 0, Ayrites = {W1, W2}, Apub = {p1, P2}
For any stage > 3, the state of the database will be identical,
so this is the result of stage semantics, shown in Figure 4 where

the tuples in gray, green, and pink are deleted from the original
relations and added to the delta relations.

Since the delta relations are monotone and can only be
as big as the base relation, we can show the following (for
brevity, the formal proofs are deferred to the full version).

PROPOSITION 3.9. Let R be a relational schema. For every
database and delta program over R, stage semantics will con-
verge to a unique fixpoint.

PRrROOF SKETCH. As stage semantics is rule-order indepen-
dent and deterministic, at stage ¢t we add all the A; tuples that
can be derived from D’ to get A’*!, and further delete all the
tuples in AX*! from R! to get Ri*!. Furthermore, the number
of tuples with relations in R is monotonically decreasing.
Thus, there exists a stage in which no more tuples with these
relations who satisfy the rules exist. This is the stage that
defines the fixpoint. O

3.5 End Semantics

Finally, as a baseline, we define end semantics following
standard datalog evaluation of delta relations.

DEFINITION 3.10. Let D and P be a database and a delta
program over the schema R U A. Fort = 0, we have A} =
and Rf is the relation R in D. According to end semantics, at
each state t > 0, R} « R?, and AL — A7V U {tup | tup =
a(head(r)),r € P,albody(r)] € D' !, a : body(R) — D'™1}.
Denote the fixpoint of this semantics as T, i.e, DT = DT*
At state T, RiT — R? \ Al.T_l, Al.T — Al.T_l. The result of end
semantics End(P, D) is the set of non-delta tuples S = D° \ DT

This is the standard datalog semantics in the sense that it
treats the relations in A as regular intensional relations and
only updates them during the evaluation. Once the evalua-
tion process is completed, the relations in R are updated.

ExAMPLE 3.11. For the database and rules in Figures 1 and 2,
all possible delta tuples will be derived using the rules as shown
in Example 2.1, i.e, {A(g2), A(az), A(as), A(wy), A(wz), A(p1),
A(p2), A(c)}. Then, after the derivation process is done, the
tuples {g2, az, as, W1, W, p1, P2, €} will be deleted, to get the
database appearing in Figure 4 where the gray, green, pink and
orange colored tuples are deleted from the original relations
and added to the delta relations.

As end semantics is closely related to datalog evaluation, it

inherits the basic property of converging to a unique fixpoint.

3.6 Stabilizing Sets and Problem Statement

After defining delta programs, we introduce the notion of a
stable database with respect to a delta program.

DEFINITION 3.12. Given a database D over a schema R U
A, and a delta program P, D is a stable database w.r.t P if

{a(head(r)) | r € P, : body(r) — D, a(body(r)) € D} = 0,
i.e., D does not satisfy any rule in P.

ExAMPLE 3.13. Reconsider the database in Figure 1 and the
rules in Figure 2. If we remove the tuples included in the result
of end semantics in Example 3.11 and add their corresponding
delta tuples, we would have a stable database.

Alternatively, we can say that a stable database w.r.t. a
delta program is a database where no delta tuples can be
generated. A database is said to be unstable if it is not stable.

DEFINITION 3.14. Given an unstable database D w.r.t a
delta program P over a schema R U A, a stabilizing set for D
is a set of tuples S such that (D \ S) U A(S) is stable.

ExAMPLE 3.15. Returning to Example 3.13, a stabilizing
set would be S = {g,, as, a3, W1, W, P1, P2, C}, as the database
without these tuples and with the tuples in A(S) does not satisfy
any of the rules in Figure 2.

Our objective is to study the complexity and the relation-
ships between the semantics we have defined, and devise
efficient algorithms to find their solutions.

DEFINITION 3.16 (PROBLEM DEFINITION). Given (D, P, o),
where D is a database and P is a delta program over schema
R, A, and o is a semantics, the desired solution is the result of
o wr.t. D and P, denoted by o(D, P).

Initialization of the database and the deletion pro-
cess. The deletion process can start in two ways. When the
given database contains tuples that violate the constraints
expressed by the delta program. This is a popular scenario for
data repair. Another scenario is where the initial database is
stable and the user wants to delete a specific set of tuples. At
start, we assume A; = 0 for all i. To start the deletion process,
we add a rule for each tuple R;(C) of the form A;(C) :— R;(C).

ExampLE 3.17. Consider a slightly different schema than
the database in Figure 1 where the Pub table also mentions the
conference in which each paper was published and the delta
rule Apyp(p1, t1, confr) : —Pub(py, t1, con fi), Pub(ps, t1, confz)
stating that no two papers with the same title can be in pub-
lished in two two different conferences. An unstable database
with two tuples Pub(1,X,Cy) and Pub(1, X, C;) will violate
this rule and start the deletion process. In our running example,
however, we would like to start the deletion process by deleting
the tuple g5, and for this we have defined rule (0) in Figure 2.

We can observe the following:

ProrosITION 3.18. Given a database D, a delta program P,
and a semantics o, both D and o(P, D) are always stabilizing
sets under all four semantics, where (P, D) is the result of o
given P and D. In other words, a stabilizing set always exists.

Intuitively, if the database is stable, a stabilizing set is the
empty set. Otherwise, the entire database is a stabilizing set.
Additionally, the result of each semantics is defined as the set
of non-delta tuples S such that (D \ S) U A(S) is stable. Note
that sometimes these sets and the results of the different
semantics are identical. E.g., if there is only one tuple in the
database and one delta rule that deletes it, then this tuple
forms the unique stabilizing set and will be returned by all
semantics. Moreover, the results of independent and step
semantics may not be unique:

PROPOSITION 3.19. There exist a database D and a delta pro-
gram P such that there are two possible results for independent
and step semantics.

To see this, consider the database D = {R;(a), R2(b)} and
a program with two rules (1) A1(x) : —R1(x), Rz(y), and (2)
A2(y) : —R1(x), R2(y). For independent and step semantics,
there are two equivalent solutions: {R;(a)} derived from rule
(1), or {R2(b)} derived from rule (2).

Expressiveness of delta rules. We discuss some
forms of constraints that are captured by delta rules.
DCs [10] can be written as a first order logic state-
ment: Vxj,...,Xm —(Ri(X1),...,Rm(Xm), ¢(X1,...,Xm))
(X1, ...,Xpy) is a conjunction of atomic formulas of the
form R;[Ak] o Rj[A;], Ri[Ak] o a, where « is a constant,
and o € {<,>,=,#,<,>}. Given a DC, C, of this form, we
translate it to the following delta rule:

A1(x1) : =Ri(%1). . . ., Rm(xm), {AL 0 A] | Ri[Ax] o Rj[A[] € C},

{ALoa | Ri[Ak]oa €C}

The first part of the body contains the atoms used in C, the
second part contains the comparison between different at-
tributes in C and the third contains the comparison between
a attribute and a constant in C. For independent semantics,
the head of the rule can be any delta atom A;(x;). Ind(P, D)
will then be the smallest set of tuples that should be deleted
such that the rule is not satisfied, i.e., from each set of tuples
that violate C, at least one tuple will be deleted. Le., Ind(P, D)
will be the smallest set of tuples that needs to be deleted such
that the database will comply with C. Step semantics can
also mimic this by adding a rule for each atom in the rule
corresponding to the C. We will have m rules and each will
have as a head one of the atoms participating in the DC.
Thus, for each set of of tuples violating C, we have a set of
m rules allowing us to delete any tuple from this set. Note
that in both Ind(P, D) and Step(P, D), only one tuple from
the violating set would be deleted.

Similarly, we can show that delta rules, along with the
appropriate semantics, can express Domain Constraints [16],
“after delete, delete” SQL Triggers [22], and Causal Rules
without recursion [46] (whose syntax inspired delta rules).

We now compare the results obtained from the semantics
in terms of set containment and size.

ProposITION 3.20. Given database D and delta program P,
(1) |Ind(P, D)| < |Step(P, D)|, |Stage(P, D)|, and there is a
case where |Ind(P, D)| < |Step(P, D)|, |Stage(P, D)|
(2) Stage(P,D) C End(P,D), and there is a case where
Stage(P,D) C End(P, D)

(3) Step(P,D) C End(P,D) , and there is a case where
Step(P,D) C End(P, D)

(4) There exists cases where Step(P, D) C Stage(P, D) and
cases where Stage(P, D) C Step(P, D)

4 COMPLEXITY OF FINDING RESULTS

We now analyze the complexity for each semantics.

End semantics. We follow datalog-like semantics, so the
stabilizing set according to end semantics is unique and de-
fined by the single fixpoint. Therefore, we can utilize the
standard datalog semantics, treating relations in A as inten-
sional and deriving all possible delta tuples from the program.
After the evaluation is done, we update the relations in R by
removing from them the delta tuples that have been derived.

Stage semantics. Similar to end semantics, for stage
semantics, if we evaluate the program over the database,
we would arrive at a fixpoint. Here, we apply a different
evaluation technique, separating the evaluation into stages.
At each stage of evaluation, we derive all possible tuples
through satisfied rules, and update the database. We continue
in this manner until no more tuples can be derived.

PRroPOSITION 4.1. Given a database D and delta program P,
computing End(P, D), Stage(P, D) is PTime in data complexity.

Independent and step semantics. Unlike end and stage
semantics, the other two semantics are computationally hard:

PrOPOSITION 4.2. Given a delta program P, an unstable
database D w.r.t P, and an integer k, it is NP-hard in the value
of k to decide whether |Ind(P, D)| < k or|Step(P, D)| < k.

PROOF SKETCH. We reduce the decision problem of min-
imum vertex cover to finding Step(P,D) and Ind(P, D).
Given a graph G = (V,E) and an integer k, we de-
fine an unstable database D: for every (u,v) € E(G) we
have E(u,v),E(v,u) € D and for every v € V(G) we
have VC(v) € D. For independent semantics we define
the delta program: (1) Ayc(x): —E(x,y), VC(x), VC(y), (2)
Avc(x): =VC(x), Ap(x,y), (3) Avc(y): —VC(y), Ap(x, y). For
step semantics, we only need rule (1). Rules (2) and (3) are
only used in the reduction to independent semantics to make
the derivation of tuples of the form E(a, b) not worthwhile (as
in this semantics, tuples can be removed from E and added to
Afg without being derived). We can show that a vertex cover
of size < k is equivalent to |Ind(P,D)| < k with the first
program and |Step(P, D)| < k with the second program. O

Naturally, if we consider the search problem, k is unknown
and, in the worst case, may be the size of the entire database.

Algorithm 1: Find Stabilizing Set - Independent

Input :Delta program P, unstable database D
Output: A stabilizing set S € D

Consider all possible tuples in ¢+ € D U A(D) and store the DNF
provenance for each tuple ¢;

-

X

Let F be an empty Boolean formula;
foreach t € P(D) do
L F «— FV Proo(t);
a < Min-Ones-SAT(=F);
output {t’ | a(=t') = True};

oW

=

o

5 HANDLING INTRACTABLE CASES

We now present algorithms to handle independent and step
semantics, which are NP-hard by Proposition 4.2.

5.1 Algorithm for Independent Semantics

Our approach relies on the provenance represented as a
Boolean formula [26], where the provenance of each tuple is
a DNF formula, each clause describing a single assignment
and delta tuples are negated variables.

Algorithm 1 uses this idea to find a stabilizing set. We
generate the provenance of each possible delta tuple (not
only for the ones that can be derived using an operational
semantics and the rules) represented as a Boolean formula
(line 1). This is a DNF formula for each delta tuple, where tu-
ples with relations in R are represented as their own literals
and tuples in with relations in A are represented as the nega-
tion of their counterpart tuples with relations in R. In lines
2-4 we connect these formulae using V into one formula
representing the provenance of all the delta tuples (this is a
disjunction of DNFs). We negate this formula, resulting in a
conjunction of CNFs. We then find a satisfying assignment
giving a minimum number of True values to negated variables.
In the negated formula, each satisfied clause says that at least
one of the tuples needed for the assignment the clause repre-
sents is not present in the database. An assignment that gives
the minimum number of negated variables the value True
represents the minimum number of tuples whose deletion
from the database and addition of their delta counterparts
would stabilize the database. Changing negated variables
to positive ones and vice-versa will give us an instance of
the min-ones SAT problem [31] (line 5), where the goal is to
find a satisfying assignment to a Boolean formula, which
maps the minimum number of variables to True. In line 6,
we output the facts whose negated form is mapped to True.

ExaMPLE 5.1. Reconsider the database in Figure 1 and the
program composed of the rules in Figure 2. Algorithm 1 gener-
ates the provenance formula and negates it:

—g2 A (may vV —agy V g2) A (ma3 Vv —ags vV g2) A (mp1 V —wg V az)A
(mp2 V -2 V a3) A (=€ V p1 V —wWg V —Wg)

It then generates the assignment giving the value True to the
smallest number of negated literals in line 5. This satisfying
assignment is a such that a(g,) = a(ag,) = a(ags) = False
and gives every other variable the value True. Finally, in line 6,
the algorithm returns the set of tuples that @ mapped to False,
i.e, {g2,ag,, ags}, as in Example 3.4.

Correctness: If procedure min-ones SAT finds the mini-
mum satisfying assignment, Algorithm 1 outputs Ind(P, D).
Yet, any satisfying assignment would form a stabilizing set.
Complexity: Given a database D and a program P, the
complexity of computing the provenance Boolean formula
is [D|UPD; the time to use a solver to find the minimum sat-
isfying assignment is theoretically not polynomial, however,
such algorithms are efficient in practice.

5.2 Algorithm for Step Semantics

We describe a greedy algorithm (Algorithm 2) for step seman-
tics. We will use the concepts of provenance graph and the
benefit of a tuple. A provenance graph [18] is a collection of
derivation trees [4]. A derivation tree of a tuple, T = (V, E), il-
lustrates the tuples that participated in its derivation (the set
of nodes V), and the rules that were used [17] (each rule that
uses ty, . .., tx to derive t is modeled by edges from t4, . . ., i
to t). When there are several derived tuples of interest, a
provenance graph joins together derivation trees, but the
input tuples appear only once and are reused in the graph.
In our case, only delta tuples are derived, so we define the
provenance graph as follows: each tuple is associated with a
node and there is an edge from #; to A(ty) if #; participates
in an assignment resulting in A(t;). The benefit of each non-
delta node t is the number of assignments it participates in
minus the number of assignments A(t) participates in. There-
fore, the benefit of each non-delta node t equals the number
of its outgoing edges minus the number of outgoing edges
from A(t). Algorithm 2 stores the provenance for all delta
tuples generated by end semantics as a graph. For each leaf
node in this graph for input tuples ¢, we store its benefit ;.

Intuitively, Algorithm 2 chooses for the output stabilizing
set only tuples that can be derived using the delta rules and
prioritizes at each layer (using the benefits) those tuples ¢
where the number of assignments eliminated by deletion of
t is large, and the number of assignments enabled by the
creation of A(t) is small.

We consider the nodes of the provenance graph G in each
layer and the set of assignments Assign. For each layer i in
G, we greedily choose to add to the stabilizing set the tuple
t, where A(t) is in layer i (layer i is denoted by G;) and b,
is the maximum across all tuples t where A(t) is in layer
i. We then delete the subgraph induced by {A(¢') | YVa €
Assign s.t. Im(a) = A(t') Aty € Dom(a) NS At # ti}. In
words, we delete all delta tuples, such that each one of their

A(pz) A(wz)

A(fz)z T\

w1,3 p1,1 az,—1agy, 082 —1ags.0as,—1 p2,2 wy,3 ¢,1
Figure 5: Provenance graph for D in Figure 1 and the
program in Figure 2. Red tuples are chosen for the set
returned by Algorithm 2

Algorithm 2: Find Stabilizing Set - Step

Input :Delta program P, unstable database D
Output: A stabilizing set S € D

-

Store the directed provenance graph G of End(P, D);
Compute b; for each non-delta tuple #;

)

3 Assign « {a | a is an assignment that derives A(¢) €
A(End(P, D))};
S« 0;
foreach Layer1 < i < L do
while 3A(¢) € G; st.t ¢ S do
tm = arg max,cG,n(t)eG; be;
S—SU{tm};
G «— G\ G[A(t') |Va € Assign st. Im(a) =
A(t') 3t € Dom(a) NS AL # t];

e ® N A e

10 output S;

assignments contains a tuple t;. that was chosen to be deleted,
except A(ty) itself and the tuples reachable from it, since
adding t; to S implies that A(#;) has been generated and
can participate in other derivation. We continue this process
until only the delta counterparts of the selected tuples remain
in the provenance graph. This ensures that we only delete
delta tuples that cannot be generated by any assignment.

EXAMPLE 5.2. Reconsider our running example. Its prove-
nance graph according to end semantics is shown in Figure 5.
After computing b, for all the leaf tuples, we begin iterating
over the layers of the graph. In layer 1 we only have A(g2),
with by, = —1, so we choose it. Since g, is only connected
to A(g2), we do not change G. We then continue to layer 2
where we have A(az) and A(as). We arbitrarily choose a; as
ba, = ba, = —1, and do not change G. After that, we choose as
and again not change G. In layer 3, we have w1, W, p1, p2 where
bp, < bp, < by, = by,, so we choose arbitrarily to include w; in
S. We then delete from G the subgraph induced by A(w,). Since
there are more delta tuples in this layer we continue to choose w;
and delete from G the subgraph induced by A(w;). Since there
are no more delta tuples in layers 3 and 4 except A(wy), A(wy)
wherewy, Wy € S, we return S = {g,, a,, a3, Wy, Wa }.

Correctness: Algorithm 2 returns a stabilizing set that can
be derived using the delta rules; the minimum set it can
return is Step(P, D), but in general provides a heuristic.

Complexity: Given a database D and a program P, the
overall complexity of Algorithm 2 is | D|UFD, since it is the
size of the provenance graph.

6 IMPLEMENTATION & EXPERIMENTS

We have implemented our algorithms in Python 3.6 with
the underlying database stored in PostgreSQL 10.6. Delta
rules are implemented as SQL queries and delta relations are
auxiliary relations in the database. For Algorithm 1 we have
used the Z3 SMT solver [15] and specifically, the relevant
part that allows for the formulation of optimization prob-
lems such as Min-Ones-SAT [7], which draws on previous
work in this field [32, 41, 47]. For Algorithm 2, we have used
Python’s NetworkX package [27] to model the graph and ma-
nipulate it as required by the algorithm. The approach used
to evaluate the results of all semantics is a standard naive
evaluation, evaluating all rules iteratively, and terminating
when no new tuples have been generated. The experiments
were performed on Windows 10, 64-bit, with 8GB of RAM
and Intel Core Duo i7 2.59 GHz processor, except for the
HoloClean comparison which was performed on Ubuntu 18
on a VMware workstation 12 with 6.5GB RAM allotted. The
reason for that is that the Torch package version 1.0.1.post2
required for HoloClean did not run on Windows.

Databases: We have used a fragment of the MAS data-
base [35], containing academic information about univer-
sities, authors, and publications. It includes over 124K tu-
ples and the following relations: Organization(oid, name),
Author(aid, name, oid), Writes(aid, pid), Publication(pid, title,
year), Cite(citing, cited). We have also used a fragﬁ:nt of
the TPC-H dataset [50], which included 376,175 tuples. This
dataset includes 8 tables (customer, supplier, partsupp, part,
lineitem, orders, nation, and region).

Test programs: Tables 1 and 2 show the programs we
have used for the MAS and TPC-H datasets experiments,
respectively. We use the first letter of each table as an ab-
breviation, and denote by C/C; a constant we have assigned
to an attribute. The programs were designed for different
scenarios to compare the four semantics and highlight the
manner in which each semantics is advantageous. The pro-
grams can roughly be divided into three sets: (1) those that
are meant to mimic the semantics of integrity constraints
such as DCs (programs 1-4, 11-15 in Table 1), (2) those that
are meant to perform cascade deletion (programs 5, 9, 10,
and 16-20 in Table 1 and programs 1-3 in Table 2), and (3)
those that mix between the two (programs 6-8 in Table 1,
and programs 4-6 in Table 2). For programs that express in-
tegrity constraints, independent semantics would guarantee
a minimum size repair while the other semantics may delete
a larger number of tuples. For example, in program 2 in Ta-
ble 1, using end, stage or step semantics may yield a result

Table 1: MAS Programs

Num. Program
(1) Ag(aid, n, 0id) : —A(aid, n, oid), n = C;
(2) Aw(aid, pid) : —W(aid, pid), aid = C3
(1) Ay (aid, pid) : —W(aid, pid), A(aid, n, oid), aid = C
(1) Ag(aid, n, oid) : ~-W(aid, pid), Aaid, n, oid), aid = C
(2) Aw (aid, pid) : —=W(aid, pid), A(aid, n, oid), aid = C
(1) Aa(aid, pid) : —O(oid, ny), A(aid, n, oid), oid = C
(2) Ap(aid, pid) : —O(oid, ny), A(aid, n, ozd) oid = C
(1) Ap(aid, n, 0id) : —A(aid, n, oid), n =
(2) Aw(aid, pid) : —W(aid, pid), AA(ald n, oid)
(1) As(aid, n, 0id) : —A(aid, n, oid), n =
(2) Aw(aid, pid) : —W(aid, pid), AA(azd n oid)
(3) Ap(pid, t) : —P(pid, t), Aw (aid, pid), A(aid, n, oid)
(1) Ap(pid, t) : —P(pid, t), pid = C
7 (2) Ac(pid, cited) : —=C(pid, cited), Ap(pid, t)

3)

(1)

@]

(3)

“)

(1)

@]

(3)

)

(1)

(2

(3)

Ac(citing, pid) : —=C(citing, pid), Ap(pid, t)
Ap(aid, n, oid) : ~-W(aid, pid), Aaid, n, oid), aid = C
Aw (aid, pid) : =W (aid, pid), A(aid, n, oid), aid = C
Ap(pid, t): —P(pid, t), Ay (aid, pid), A(aid, n, oid)
Ap(pid, t): —P(pid, t), W(aid, pid), AA(azd n, oid)
A (aid, n, oid) : —A(aid, n, oid), n =
Aw(aid, pid) : ~-W(aid, pid), AA(ald n, oid)
Ap(pid, t) : —P(pid, t), Ay (aid, pid)
Ac(pid, cited) : —C(pid, cited), Ap(pid, t), pid < C
Ao(oid, np) : —O(oid, ny), oid = C
Ap(aid, n, oid) : —A(aid, n, oid), Ap(oid, ny)
Ay (aid, pid) : ~-W(aid, pid), A z(aid, n, oid)

(4) Ap(pid, t) : —P(pid, t), Ay (aid, pid)

Ac(pid, c2) : —{{{{{C(pid, c2)}"T, P(t, pid)}'?, W(aid, pid)} ",
A(aid, n, 0id)}', O(oid, ny)}'®

(1) Ap(oid, ny) : —O(oid, ny), oid = C (prog. 16-20)

(2) A(aid, n, 0id) : —A(aid, n, oid), Ap(oid, ny) (prog. 17-20)
(3) Aw(aid, pid) : —W(aid, pid), Aa(aid, n, oid) (prog. 18-20)
(4) Ap(pid, t) : —P(pid, t), Aw (aid, pid) (prog. 16-20)

(5) Ac(citing, pid) : —C(citing, pid), Ap(pid, t) (prog. 20)

11-15

16-20

Table 2: TPC-H Programs

Num. Program

(1) Aps(sk, X) : =PS(sk, X), S(sk, Y), sk < C

(2) Apy(sk, X): —LI(sk, X), Aps(sk, Y)

() Aps(sk, X) : —PS(sk, X), sk < C

(2) Apg(sk, X) : —LI(sk, X), Aps(sk, Y)

) Aps(sk. pk, X) : —PS(sk, pk. X), SGsk. V). P(pk, Y),
3 sk<C

(2) Apy(sk, X): —LI(sk, X), Aps(sk, Y)

(1) Apj(ok, X) : =LI(ok, X), ok < Cy

4 (2) As(sk, X) : =S(sk, X), Apj(sk, ok, Y)

3) Ac(ck, X) : —C(ck, X), O(ok, ck, Y), Apj(ok, Z)
(1) An(nk, X) : —N(nk, X), nk = C3

5 (2) As(nk, X) : =S(nk, X), AN(nk, Y), C(nk, Z)

(3) Ac(nk, X) : =S(nk, X), An(nk, Y), C(nk, Z)

1) Ao(ck, X) : —O(ck, X), C(ck, Y), ck < C4

(2) Aps(sk, X): —PS(sk, X), S(sk, Y), sk < C4

(3) Ary(sk, X): —LI(ok, X), Ao(ok, Y)

(4) Apj(sk, X): —LI(sk, X), Aps(sk, Y)

composed of Writes tuples which will likely not be minimal
in size. If instead we use independent semantics, we could
have a result of a single Author tuple. For programs that are
purely designed for cascade deletion, we expect the result
of all semantics to be the same and therefore the fastest and
most accurate algorithm should be used, i.e., end or stage
semantics. For the programs that perform a mix of the two
options, it would depend on the desired result. For example,
program 8 in Table 1 is designed to distinguish between stage
and step semantics, where stage semantics will not be able
to use rules 3 and 4, while step semantics will not be able to
derive all delta tuples from both rules 1 and 2.

Setting and highlights: We have focused on four differ-
ent aspects in our experimental study: (1) the relationship
between the sets found for each semantics; (2) the size of the
result set computed by each algorithm; (3) the algorithms

Table 3: Containment of results for the programs in
Tables 1 and 2

Program | Step = Stage | Ind C Stage | Ind C Step

execution times and their breakdown and (4) a comparison
of our approach with PostgrSQL and MySQL triggers, and
a comparison with the state-of-the-art data repair system
HoloClean [44] that repairs cells instead of deleting tuples.
We have manually checked that Algorithms 1, 2 output the
actual result for programs 1, 2, 3, 5-9 (where the sizes of the
result are small enough to be manually verified). Hence, we
refer to the output given by these algorithms as the result
of the two semantics. All of the algorithms computed the
results in feasible time (the average runtimes for end, stage,
step and independent were 16.9, 21.1, 389.5, and 73 seconds
resp. for the programs in Table 1). In general, computing
the results of end and stage semantics is faster than those of
step and stage semantics. Thus, for programs that perform
cascade deletion (e.g., 1620 in Table 1), where the result for
all semantics is the same, it may be preferable to use end
or stage semantics. For programs such as 11-15 in Table 1,
where there is a clear difference between the results, users
may choose the desired semantics they wish to enforce, while
aware of the difference in performance. As an example, for
these programs, independent semantics would correspond
to the semantics of DCs (but would be slower to compute the
repair), while the other ones would correspond to triggers.
We also demonstrate the discrepancy between the results of
the different semantics using specific programs and Table 3
showing the relationships between the results. For example,
for program 8 in Table 1, there is a no containment of the
result of stage in the result of step semantics and vice versa.
Containment of results: Table 3 shows the relation-
ship between the results generated for the different seman-
tics. The table has three columns: Step = Stage, describing
whether the result of stage semantics is equal to the result of
step semantics, Ind C Stage and Ind C Step which capture
whether the result of independent semantics is contained in
the result of stage and step semantics respectively. The other

40000

30000

20000

Size of Result

Size of Result
O NMNWERWLMOO
Size of Result

=
o
(=]
=]
=]

(=]

1 2 3 5 6 7 8 9 11 12 13 14 15) 16 17
Program Program

(a) Size of results; Programs 1-10 (b) Size of results; Programs 11-15

18

19 20

Program

(c) Size of results; Programs 16-20

Figure 6: Comparison of result sizes for the four semantics with the programs from Table 1 (prog. 4, 10 in text)

Runtime in millisec

10°{ mmm End
10°{ mmm Stage
ig: mm Step
102 m Ind.
10!
100 1

9 10 1
Program

12 13 14 15 16 17 18 19 20

Figure 7: Execution time for finding the results of the four semantics with the programs from Table 1

%"e
ﬂ Process Prov

(a) Algo. 1 (1-15) (b) Algo. 2 (1-15)

Traverse
Process Prov Eval
/f 1.3%
. Solve
Process Prov S99
Eval .

Process Prov

(c) Algo. 1 (16-20) (d) Algo. 2 (16-20)

Figure 8: Runtime breakdown for programs 1-15 and 16-20, and Algorithms 1 (ind. sem.) and 2 (step sem.)

S8
S o
(SRS
S S

8000

Size of Result

4 5 6
Program Program

(a) Size of results; TPC-H (b) Runtime; TPC-H
Figure 9: Comparison of results sizes and runtimes for
the four semantics with TPC-H programs

relationships always hold, as shown in Figure 3. We start
by reviewing the results for the programs in Table 1. For
program 2, there is no containment of the result of indepen-
dent semantics, since it includes a single Author tuple which
cannot be derived, so it cannot be in the results of stage or
step semantics. Programs 3 and 4 are composed of two rules
with the same body, so the result of stage semantics contains
all derivable tuples while the result of step and independent
semantics contains only one Author tuple (this is also evi-
dent in Figure 6a for program 3). Program 8 was designed
based on the proof of Proposition 3.20, and thus “separates”
between step and stage semantics. For programs 12-15, the
tuples chosen for the result in independent semantics cannot
be derived and hence there is no containment. Finally, for
programs 16-20, all derived tuples have to be included in

the result, according to all semantics and, therefore, all the
conditions in the table are true. The results for the TPC-H
programs in Table 2 are shown in the lower part of Table 3
with the prefix “T”. As for the first column, we found that
only for program 5, Stage ¢ Step. This program contains
two rules with the same body, and step semantics was able
to delete fewer tuples by selecting the minimal set of Cus-
tomer and Supplier delta tuples to derive. For the second and
third columns, the result of independent semantics was not
contained in the result of either step or stage or both for all
programs except programs 2 and 5, as Algorithm 1 deleted
tuples that were not derivable by other semantics.

Results size: Figure 6 depicts the results size for the
different programs in Table 1. For the chart in Figure 6a, we
included all programs except for 4 and 10, as they would
have distorted the scale. For program 4, the sizes were 956
for end and stage semantics and 1 for step and independent
semantics. For program 10, the sizes of all results were 24,798.
In Figure 6a, as predicted in Figure 3, the size of the result of
end semantics is always larger than the sizes of the results
according to the other semantics. For program 2, the result
of independent semantics can be of size 1 (the Author tuple
with aid = C), whereas all other semantics may include

only Writes tuples, since Author tuples cannot be derived.
Furthermore, note that programs 3 and 4 was designed to
have only one tuple in the result of step and independent
semantics (the Organization tuple with oid C), and all Author
tuples along with the Organization tuple for end and stage
semantics. Figure 6b shows the results for programs 11-15.
Note that the results of all semantics except for independent
semantics can only include Cite tuples. Thus, the results size
according to end, stage and step semantics is identical for all
programs, but the result size for the independent semantics
actually decreases as the number of joins increases. In Figure
6¢, all results sizes are equal for every program since all
possible tuples need to be included in the stabilizing set by
all semantics. The maximum result size for program 20 was
38,954. Figure 9a shows the sizes of the results for the TPC-
H programs in Table 2, the largest being 14,550 tuples for
programs 1, 2, 3 through end, stage and step semantics. The
rational for the results here is similar, where for programs 1,
3, 5 and 6 Algorithm 1 (ind. semantics) outputted a smaller
result by choosing tuples that were not derived by the rules.
Execution times: We have examined the execution time
for the algorithms of the four semantics and all programs in
Table 1 (Figure 7) and Table 2 (Figure 9b). The recorded times
are presented in log scale. When the execution time is not
negligible, Algorithms 1 and 2 require the largest execution
time for most programs due to the overhead of generating
the Boolean formula and finding the minimum satisfying as-
signment or generating the provenance graph and traversing
it. For programs 10 and 16-20, all derived tuples participate
in the result of each semantics and, hence, all algorithms
have to “work hard”. In particular, Algorithm 2 has to tra-
verse a provenance graph of 5 layers for program 20. The
results for Programs 11-15 (single rule with an increasing
number of joins) were all fast (the slowest time was 5.5 sec-
onds, incurred for stage semantics). Thus, an increase in the
number of joins does not necessarily reflect an increase in
execution time. Most computations were dominated either
by Algorithm 1 or 2 as both are algorithms that store and pro-
cess the provenance as opposed to the two other algorithms
for end and stage semantics. In some cases, Algorithm 2
is faster than the algorithms for stage and end semantics.
This happens when the runtimes are either very small (e.g.,
programs 1 and 2), or for programs 11-15. In the latter, stage
and end semantics have to delete all tuples that are derived
through the rule and add their delta counterparts to the data-
base throughout the evaluation process. For Algorithm 2,
after creating the graph, we need to traverse a single layer.
Runtime breakdown for Algorithms 1 and 2: Figure
8 shows the breakdown of the execution time for both al-
gorithms. We have computed the average distribution of
execution time across programs 1-15 and programs 16-20

in Table 1. In Figure 8a, most of the computation time is de-
voted to the evaluation and storage of the provenance (Eval).
The second most expensive phase is finding the minimum
satisfying assignment for the Boolean formula in the SAT
solver (Solve). Converting the provenance to a Boolean for-
mula does not require much time (Process Prov). Similarly,
for Algorithm 2 in Figure 8b, most of the time is spent on
evaluation and provenance storing (Eval). Traversing and
choosing the nodes with maximum benefit is the second
most expensive phase (Traverse) and finally, converting the
provenance into a graph and determining the benefits is neg-
ligible (Process Prov). Figure 8c shows the breakdown for
programs 16—-20. Algorithm 1 devotes a larger percentage to
solving the Boolean formula. Figure 8d shows that most of
the execution time is devoted to traversing the provenance
graph and finding the tuples to include in the outputted set.

Comparison with Triggers: Triggers [22, 39, 49] is a
standard approach for updating the database when con-
straints are violated. We have implemented Programs 3, 4,
5, 8 and 20 from Table 1 using triggers both in PostgreSQL
and in MySQL. For programs 3 and 4, where two triggers
are programmed to fire at the same event, the PostgreSQL
triggers were fired alphabetically by their assigned name
while the MySQL triggers fired by the order in which they
were written. Due to this fact, for program 4, the PostgreSQL
triggers deleted all Author tuples associated with a single
organization, instead of one Organization tuple. In these sce-
narios, using step semantics would have yielded a smaller
result. Both PostgreSQL and MySQL triggers have led to the
same result as the four semantics for program 5. For pro-
gram 8, PostgreSQL triggers, the Writes tuples were deleted
using the trigger version of rule 2 and then the Publication
tuples were deleted using the trigger version of rule 4. For
the MySQL implementation, the results depended on the
order in which the triggers were written. When the Author
triggers were written before the Writes triggers, the tuples
with this relation were deleted, and then their associated
Publication tuples. When the order was reversed, the Writes
tuples were deleted and then their associated Publication
tuples. If we would have applied stage semantics instead,
only the Author and Writes tuples would have been deleted.
Using step semantics, we would have only deleted an Author
tuple and the Publication tuples associated with it (regard-
less of the name of the trigger or the order in which it was
written). For program 20, the same number of tuples were
deleted by the PostgreSQL triggers as for the four semantics
(shown in Figure 6¢). The MySQL triggers were not able to
terminate computation before the connection to the server
was lost. Computing the trigger results for programs 3, 4,
and 8 was negligible in terms of execution time for both
PostgreSQL and MySQL implementations. For program 20,
it was 3.3 minutes for PostgreSQL triggers as opposed to

Table 4: Number of over deletions (+) for each of the
four semantics compared with number of under re-
paired tuples (=) by HoloClean for an increasing the
number of errors. Note that in contrast to HoloClean
all of our semantics always fixed all violations

Deleted Tuples Repaired Tuples
Errors | Ind Step Stage End HoloClean
100 +0 +0 +389 +389 -26
200 +0 +1 +479 +479 -60
300 +0 +5 +630 +630 -128
500 +0 +16 +786 +786 -234
700 +0 +21 +878 +878 -480
1000 +0 +34 +1000 +1000 -693

Table 5: Number of tuples that violate a DC with other
tuples in the table after/before the repair for both
HoloClean and our four semantics. Some tuples partic-
ipate in multiple violations

HoloClean Semantics
Errors | DC; DG, DGy DCy Total Total
100 22/42 30/46 0/112 0/415 52/615 0/615
200 42/82 78/110 0/208 0/563 120/963 0/963
300 | 94/158 98/140 64/302 187/761 443/1361 0/1361
500 134/254 116/246 218/500 464/1015 932/2015 0/2015
700 | 198/320 182/364 580/716 872/1272 1832/2672 0/2672
1000 | 238/474 186/520 962/1006 1355/1612 2741/3612 0/3612

2.9 minutes for end semantics, and 4.25 minutes for stage
semantics, 40.3 minutes for step semantics, and 2.4 minutes
for the independent semantics.

= End
N Stage
= Step

= End
EEm Stage
mmm Step

N nd.

mmm HoloClean

._.
=
-
S

. nd.
mmm HoloClean

Runtime in millisec
o
2

Runtime in millisec

=
2

100 200 300 500 700 1000
#Errors

2000 3000 4000 5000 6000 7000 8000
#Rows

(a) Increasing #errors
Figure 10: Runtime comparison with HoloClean for in-
creasing number of errors (rows set to 5000) and num-
ber of rows (errors set to 700)

(b) Increasing #rows

Comparison with HoloClean: HoloClean [44] is a data
repair system that relaxes hard constraints (as opposed to
our system that views the delta rules as hard constraints) and
uses a probabilistic model to infer cell repairs (instead of tu-
ple deletions) in order to clean the database. It leverages DCs,
among other methods, to detect and repair cells. HoloClean
uses the context of the cell and statistical correlations to
repair cells, rather than delete tuples solely based on con-
straints, as we do for our semantics. In addition, HoloClean
does not support cascade deletion. Nevertheless, we have
examined what would happen if HoloClean was used in the
same context as our system and what would be the differ-
ence in results, while also examining the performance of our

algorithms for the different semantics in this scenario. We
have used the code of the system from [1] with the default
configuration that allows for a single table to be inputted.
Our comparison used the Author table as presented at the
start of this section with an extra attribute stating the or-
ganization name: Author(aid, name, oid, organization). We
have used four DCs, expressed here as delta rules:
(DC1) A, (a1,n1,01,0n1) <= Ai(ai, ny,o1,0n1),

Az(az, na, 02,0n2), ai = az, 01 # 02
(DC3) Aa,(a1,ng,o01,0n1) :- Ai(ai,ni,o1,0ny),

Az(az, na,02,0n2), ai = az,ni # ny
(DC3) Aa (a1, nyg,01,0n1) :- Ai(ag,ni,o1,0n1),

Az(az, nz,02,0n2), ai = az,ony # ony
(DC4) Aa,(a1,n1,01,0n1) := Ai(ar,ny,01,0m1),

Az(az, nz, 02,0n2), 01 = 02,0n1 # ony
Note that these delta rules simulate DCs semantics. E.g., the
first DC says that there cannot be two tuples with the same
aid and a different oid attribute. Thus, if there is such a pair of
tuples, the delta rule will delete at least one of them. For these
DCs, the results of independent and step semantics should
be exact in theory (although our algorithms are heuristic so
their output may not be identical to the theoretical results),
while the results of end and stage semantics should delete
all tuples that satisfy any of these constraints. For Tables 4
and 5 we have taken a table of 5000 rows and increased the
number of errors. Table 4 shows the results for the number
of tuples deleted beyond the minimum required number by
each of our semantics and the difference between the number
of repairs to cells made by HoloClean (this is identical to the
number of repaired tuples) to the number of required repairs.
Algorithm 1 deleted the same number of tuples as the number
of errors. The algorithms for the rest of the semantics ‘over
deleted’, while HoloClean has performed fewer repairs than
needed? outputting an unstable database. In Table 5 we have
measured the number of tuples that violate each DC with an-
other tuple after/before the repair for HoloClean, where the
“Total” column shows the sum of violations (the sum may be
larger than the size of the set, since tuples may participate in
violations through multiple DCs). The numbers are the sizes
of the results generated by running each DC as an SQL query
before and after the repair. As guaranteed by Proposition 3.18
and by our algorithms, every semantics repairs the database
so that there are no sets of tuples that violate a DCs, where
HoloClean may leave some violating sets of tuples after the
repair. Figures 10a and 10b show the runtime performance
for all semantics alongside the performance of HoloClean
for an increasing number of errors with 5000 rows and for
an increasing number of rows with 700 errors. End and stage
semantics were faster than the rest, while Algorithms 1 and
2 had similar performance to that of HoloClean.

This is based on the report automatically generated by the system.

7 RELATED WORK

Data repair. Multiple papers have used database con-
straints as a tool for fixing (in our terms stabilizing) the
database [5, 6, 11, 19, 44]. The literature on data repair can
be divided by two main criteria: the types of constraints
considered and the methods to repair the database. A wide
variety of constraints with different forms and functions
have been proposed. Examples include functional depen-
dencies and versions thereof 8, 30], and denial constraints
[10]. As we have discussed in Section 3.6, our model can
express various forms of constraints, but our semantics al-
low these constraints to be interpreted in different ways and
not operate according to one specific algorithm or approach.
Regarding methods of data repair, previous works have con-
sidered two main approaches: (1) repairing attribute values
in cells [6, 11, 29, 33, 44] and (2) tuple deletion [10, 33, 34];
our work focuses on the latter. A major advantage of our
approach is the ability to perform cascade deletions over
multiple relations in the database while following different
well-defined semantics (and the admin may choose which
one to follow based on the application scenario). Similar to
our independent semantics, a common objective for data
repairs is to change the database in the minimal way that
will make it consistent with the constraints [5, 19, 33]. In
some scenarios a good repair can be obtained by changing
values in the database and the metric of minimal changes
may not work well [44]. However, in our approach as in
[10], we assume that the starting database is complete, so the
only way to fix it is by deleting tuples and thus we use the
minimum cardinality metric to achieve a repair following the
delta program; extending delta rules to updates of values is
an interesting future work. Similar to our declarative repair
framework by delta rules, declarative data repair has been
explored from multiple angles [20, 21, 28, 43, 51]; e.g., [20]
has focused on the rule-based framework of information ex-
traction from text and includes a mechanism for prioritized
DC repairs, while [44] expresses constraints in DDlog [48].

Causality in databases. This subject has been the ex-
plored in many previous works [36-38]. Works such as
[45, 46] consider causal dependencies for explaining results
of aggregate queries, that start their operation when there is
an initial event of tuple deletion called “intervention” and
repair the database if a constraint is violated, e.g., [46] con-
sidered repairs with respect to foreign keys in both ways
(similar to rules (2) and (3) in Example 1.1). Delta programs
can capture these as well as more complex cascaded deletion
rules. Moreover, interventions can also be applied in our
framework, as we can add auxiliary rules to the program
that will start the deletion process.

Stable model. Stable model semantics [14, 24] is a way
of defining the semantics of the answer set of logic programs

with negation using the concept of a reduct. In stable models,
if a tuple does not exist in the database, it means that its
negation exists. In our model, A; is not the negation of R;,
but is a record of deleted tuples from R;. Also in our model,
the head atom in each rule can only be a delta atom, rather
than a positive atom as in stable model. Another relevant
work related to our framework is [23], where the authors
used the concept of stable models to solve the data conflict
problem with trust mappings. The way one’s belief is updated
from others’ beliefs is expressed by weighted update rules
that are similar in spirit to our delta rules. However, unlike
the delta rules, in [23] rules have priorities, the results of
the semantics can be computed in PTime under the skeptic
paradigm, and they have different usages.

Deletion propagation. Classic deletion propagation is
the problem of evaluating the effect of deleting tuples from
the database D on the view obtained from evaluating a query
Q over D [18, 25, 26]. A more closely related variation is
the source side-effect problem [9, 12, 13], which focuses on
finding the minimum set of source tuples in D that has to be
deleted for a given tuple t € Q(D) to be removed from the
result. Our approach may be combined with this problem
by including the delta program as another input and solving
the source side-effect problem given the delta program and
a particular semantics.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a unified framework for data re-
pair that involves deletions. We proposed delta rules to spec-
ify the constraints on the data and four semantics that cap-
ture behaviors inspired by DCs, a subset of SQL triggers, and
causal dependencies, allowing for different interpretation
of the same set of constraints. We studied the relationships
between these semantics and their complexity, proposed
efficient algorithms, and evaluated them experimentally.

We considered delta programs that are not inherently
recursive (Section 2). Although all definitions and complexity
results (in Sections 2, 3, and 4) apply to recursive programs,
our algorithms for intractable cases cannot currently handle
recursive programs as for such programs the provenance size
may be super-polynomial in the database size. Extending
our solutions to recursive programs is a future work. Other
future directions include extensions to updates in addition
to deletions, and to soft and probabilistic constraints.

Acknowledgements. This research has been funded by the Eu-
ropean Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (Grant agreement
No. 804302), the Israeli Science Foundation (ISF) Grant No. 978/17,
NSF awards IIS-1552538 and 1IS-1703431, NIH award R0O1EB025021,
and the Google Ph.D. Fellowship. The contribution of Amir Gilad
is part of his Ph.D. research conducted at Tel Aviv University.

REFERENCES

(1]
(2]

(10]

(11]
(12]

(13]

(14]

(15]
(16]

(17]

(18]
(19]

[20]

[21]

[22]
(23]

[24

[l

[25]

[26]

Code for holoclean. https://github.com/HoloClean/holoclean.

Serge Abiteboul, Meghyn Bienvenu, and Daniel Deutch. Deduction in
the presence of distribution and contradictions. In WebDB, 2012.
Serge Abiteboul, Daniel Deutch, and Victor Vianu. Deduction with
contradictions in datalog. In ICDT, pages 143-154, 2014.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent
databases: Algorithms and complexity. In ICDT, pages 31-41, 2009.
Leopoldo E. Bertossi, Solmaz Kolahi, and Laks V. S. Lakshmanan. Data
cleaning and query answering with matching dependencies and match-
ing functions. Theory Comput. Syst., 52(3):441-482, 2013.

Nikolaj Bjerner, Anh-Dung Phan, and Lars Fleckenstein. vz - an
optimizing SMT solver. In TACAS, pages 194-199, 2015.

Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anasta-
sios Kementsietsidis. Conditional functional dependencies for data
cleaning. In ICDE, 2007.

Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. On propa-
gation of deletions and annotations through views. In PODS, pages
150-158, 2002.

Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity
maintenance using tuple deletions. Inf. Comput., 197(1-2):90-121,
2005.

Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Holistic data cleaning: Putting
violations into context. In ICDE, pages 458-469, 2013.

Gao Cong, Wenfei Fan, and Floris Geerts. Annotation propagation
revisited for key preserving views. In CIKM, pages 632-641, 2006.
Gao Cong, Wenfei Fan, Floris Geerts, Jianzhong Li, and Jizhou Luo.
On the complexity of view update analysis and its application to an-
notation propagation. IEEE Trans. Knowl. Data Eng., 24(3), 2012.
Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and expressive power of logic programming. ACM Comput.
Surv., 33(3):374-425, 2001.

Leonardo Mendonga de Moura and Nikolaj Bjerner. Z3: an efficient
SMT solver. In TACAS, pages 337-340, 2008.

Daniel Deutch and Nave Frost. Constraints-based explanations of
classifications. In ICDE, pages 530-541, 2019.

Daniel Deutch, Amir Gilad, and Yuval Moskovitch. Selective prove-
nance for datalog programs using top-k queries. PVLDB, 8(12):1394-
1405, 2015.

Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. Circuits for
datalog provenance. In ICDT, pages 201-212, 2014.

Ronald Fagin, Benny Kimelfeld, and Phokion G. Kolaitis. Dichotomies
in the complexity of preferred repairs. In PODS, pages 3-15, 2015.
Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansum-
meren. Declarative cleaning of inconsistencies in information extrac-
tion. ACM Trans. Database Syst., 41(1):6:1-6:44, 2016.

Helena Galhardas, Daniela Florescu, Dennis E. Shasha, Eric Simon, and
Cristian-Augustin Saita. Declarative data cleaning: Language, model,
and algorithms. In VLDB, pages 371-380, 2001.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Data-
base systems - the complete book (2. ed.). Pearson Education, 2009.
Wolfgang Gatterbauer and Dan Suciu. Data conflict resolution using
trust mappings. In SIGMOD, pages 219-230, 2010.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In ICLP, pages 10701080, 1988.

Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance
semirings. In PODS, pages 31-40, 2007.

Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tan-
nen. Update exchange with mappings and provenance. In VLDB, pages

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]
[39]
[40]
[41]
[42]

[43]

[44]

[45]
[46]
[47]

[48]

[49]

[50]
[51]

675-686, 2007.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network
structure, dynamics, and function using networkx. Technical report,
Los Alamos National Lab, United States, 2008.

Jian He, Enzo Veltri, Donatello Santoro, Guoliang Li, Giansalvatore
Mecca, Paolo Papotti, and Nan Tang. Interactive and deterministic
data cleaning. In SIGMOD, pages 893-907, 2016.

Solmaz Kolahi and Laks V. S. Lakshmanan. On approximating optimum
repairs for functional dependency violations. In ICDT, pages 53-62,
2009.

Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkata-
subramanian. Metric functional dependencies. In ICDE, 2009.

Stefan Kratsch, Daniel Marx, and Magnus Wahlstrém. Parameterized
complexity and kernelizability of max ones and exact ones problems.
TOCT, 8(1):1:1-1:28, 2016.

Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha
Chechik. Symbolic optimization with SMT solvers. In POPL, pages
607-618, 2014.

Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. Computing opti-
mal repairs for functional dependencies. In SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 225-237, 2018.
Andrei Lopatenko and Leopoldo E. Bertossi. Complexity of consistent
query answering in databases under cardinality-based and incremental
repair semantics. In ICDT, pages 179-193, 2007.

MAS. http://academic.research.microsoft.com/.

Alexandra Meliou, Wolfgang Gatterbauer, Joseph Y. Halpern,
Christoph Koch, Katherine F. Moore, and Dan Suciu. Causality in
databases. IEEE Data Eng. Bull., 33(3):59-67, 2010.

Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and
Dan Suciu. WHY so? or WHY no? functional causality for explaining
query answers. In MUD, pages 3-17, 2010.

Alexandra Meliou, Sudeepa Roy, and Dan Suciu. Causality and expla-
nations in databases. PVLDB, 7(13):1715-1716, 2014.

Jim Melton and Alan R Simon. SQL: 1999: understanding relational
language components. Elsevier, 2001.

MySQL. Mysql trigger syntax. https://dev.mysql.com/doc/refman/8.0/
en/trigger-syntax.html, 2019.

Robert Nieuwenhuis and Albert Oliveras. On SAT modulo theories
and optimization problems. In SAT, pages 156-169, 2006.
PostgreSQL. Postgresql trigger behavior. https://www.postgresql.org/
docs/12/trigger-definition.html, 2019.

Nataliya Prokoshyna, Jaroslaw Szlichta, Fei Chiang, Renée J. Miller, and
Divesh Srivastava. Combining quantitative and logical data cleaning.
PVLDB, 9(4):300-311, 2015.

Theodoros Rekatsinas, Xu Chu, Thab F. Ilyas, and Christopher Ré.
Holoclean: Holistic data repairs with probabilistic inference. PVLDB,
10(11):1190-1201, 2017.

Sudeepa Roy, Laurel Orr, and Dan Suciu. Explaining query answers
with explanation-ready databases. PVLDB, 9(4):348-359, 2015.
Sudeepa Roy and Dan Suciu. A formal approach to finding explanations
for database queries. In SIGMOD, pages 1579-1590, 2014.

Roberto Sebastiani and Silvia Tomasi. Optimization in SMT with LA(Q)
cost functions. CoRR, abs/1202.1409, 2012.

Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and
Christopher Ré. Incremental knowledge base construction using deep-
dive. PVLDB, 8(11):1310-1321, 2015.

American National Standard. Information Systems Database Languages
SQL Part 1/2: Framework/Foundation. American National Standards
Institute, Inc., 1999.

TPC. Tpc benchmarks, 2020.

Maksims Volkovs, Fei Chiang, Jaroslaw Szlichta, and Renée J. Miller.
Continuous data cleaning. In ICDE, pages 244-255, 2014.

https://github.com/HoloClean/holoclean
http://academic.research.microsoft.com/
https://dev.mysql.com/doc/refman/8.0/en/trigger-syntax.html
https://dev.mysql.com/doc/refman/8.0/en/trigger-syntax.html
https://www.postgresql.org/docs/12/trigger-definition.html
https://www.postgresql.org/docs/12/trigger-definition.html

	Abstract
	1 Introduction
	2 preliminaries
	3 Framework For Delta Rules
	3.1 Delta Relations, Rules, and Program
	3.2 Independent Semantics
	3.3 Step Semantics
	3.4 Stage Semantics
	3.5 End Semantics
	3.6 Stabilizing Sets and Problem Statement

	4 Complexity of finding results
	5 Handling Intractable Cases
	5.1 Algorithm for Independent Semantics
	5.2 Algorithm for Step Semantics

	6 Implementation & Experiments
	7 Related Work
	8 Conclusions and Future Work
	References

