
iQCAR: A Demonstration of an Inter-Query Contention
Analyzer for Cluster Computing Frameworks

Prajakta Kalmegh, Harrison Lundberg, Frederick Xu, Shivnath Babu, Sudeepa Roy
Department of Computer Science, Duke University

Durham, North Carolina
{pkalmegh,hgl2,hx26,shivnath,sudeepa}@cs.duke.edu

ABSTRACT
Unpredictability in query runtimes can arise in a shared cluster
as a result of resource contentions caused by inter-query interac-
tions. iQCAR - inter Query Contention AnalyzeR is a system that
formally models these interferences between concurrent queries
and provides a framework to attribute blame for contentions. iQCAR
leverages a multi-level directed acyclic graph called iQC-Graph to
diagnose the aberrations in query schedules that lead to these re-
source contentions. The demonstration will enable users to perform
a step-wise deep exploration of such resource contentions faced by
a query at various stages of its execution. The interface will allow
users to identify top-k victims and sources of contentions, diagnose
high-contention nodes and resources in the cluster, and rank their
impacts on the performance of a query. Users will also be able to
navigate through a set of rules recommended by iQCAR to compare
how application of each rule by the cluster scheduler resolves the
contentions in subsequent executions.

KEYWORDS
Performance evaluation; contention analysis; blame attribution;
resource bottleneck; cluster computing systems
ACM Reference Format:
Prajakta Kalmegh, Harrison Lundberg, Frederick Xu, Shivnath Babu, Sudeepa
Roy. 2018. iQCAR: A Demonstration of an Inter-Query Contention Ana-
lyzer for Cluster Computing Frameworks. In SIGMOD’18: 2018 International
Conference on Management of Data, June 10–15, 2018, Houston, TX, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3183713.3193567

1 INTRODUCTION
Large scale data analytics frameworks likeHadoop [6] and Spark [11]
process a mix of short-running interactive BI (Business Intelligence)
queries along with long-running ETL or batch analytics queries.
In such frameworks often recurring queries co-exist with adhoc
unplanned queries. Moreover, analytical SQL queries with varying
resource utilizations over time often share the cluster with ma-
chine learning, graph analytics, and data mining queries. In such
shared clusters, resources are allocated to multiple tenants execut-
ing mixed workloads based on their priorities, SLAs (Service-Level

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3193567

Agreements), minimum share, etc. Typically, resource allocations
are controlled by the cluster scheduler using sophisticated arbi-
tration techniques like capped capacities, reservations or use of
scheduling policies like FAIR [10] or First-In-First-Out (FIFO). Most
of these techniques rely on partitioning of available slots1 among
the contending tenants. As a result, there are no guarantees on
the usages of other resources like memory, disk IO, or network
bandwidth for competing queries leading to inter-query resource
interferences. This is a major concern in today’s clusters as per-
formance issues due to resource contentions are often wrongly
diagnosed, or are left unresolved due to lack of appropriate tools.
It is, thus, important to analyze the victims (that we call target
queries) and sources of these contentions (that we call source
queries) for identifying why and where a target query faces con-
tentions from a source query. This can help a cluster administrator
diagnose aberrations in resource allocations among tenants or de-
vise alternative query placement strategies. For example, ranking
the tenants based on their contention impact toward a target query
can prove particularly useful to revisit the shares of resources for
each tenant.

Figure 1: iQC-Graph with three levels of explanations.

In this demonstration, we will present iQCAR - inter Query
Contention AnalyzeR, a system to explore contentions faced by
queries due to inter-query interactions on a cluster computing
framework. iQCAR interface allows users to interact with a multi-
level directed acyclic graph (DAG) to progressively unravel three
levels of explanations; namely (i) Immediate Explanations (IE):
identify disproportionate waiting times spent by a query blocked

1We refer to a slot as the smallest unit of resource allocation. For example, its a CPU
core in Spark and a combination of CPU and Memory in Hadoop.

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1721

https://doi.org/10.1145/3183713.3193567
https://doi.org/10.1145/3183713.3193567

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Prajakta Kalmegh, Harrison Lundberg, Frederick Xu, Shivnath Babu, Sudeepa Roy

for a particular resource, (ii)Deep Explanations (DE): inspect this
waiting time for every resource used by the query on all hosts where
it was executed, and finally (iii) Blame Explanations (BE): quan-
tify the impact from concurrent queries toward the slowdown of a
target query. Figure 1 presents different levels of explanations in
iQC-Graph. Additionally, users will be able to filter and navigate
through cluster-level summary visual aids on: (a) high contention
resources and nodes, (b) high impact causing source queries, and
(c) high impact receiving target queries. Finally, users will be able
to browse through a list of alternate schedule rules recommended
by iQCAR and compare the results of applying them in recurring
execution of the workloads.

2 IQCAR SYSTEM
iQCAR automates the process of (i) collecting, parsing and persisting
the query execution and cluster performance logs, (ii) construction
and persistence of iQC-Graph, (iii) quantifying contention impact
and blame attribution at various levels, and (iv) generation and
application of rules for cluster scheduler to apply in subsequent
execution of theworkload.We present themulti-layered iQC-Graph
in Section 2.1, and discuss how the architecture shown in Figure 2
facilitates each of these tasks in Section 2.2.

2.1 Multi-layered iQC-Graph
Level-0 of iQC-Graph consists of target queries to be analyzed and
Level-1 contains the stages of each target query. Level-5 and Level-
6 constitute the concurrently running source stages and source
queries respectively. Levels 2, 3 and 4 of iQC-Graph provide ex-
planations of different forms and granularity. They enables us to
connect the two ends of iQC-Graph with appropriate assessment
of contention impact among all intermediate nodes and edges.

2.1.1 Immediate Explanations (IE):. Level-2 vertices provide an
explanation of the form ‘howmuch time was spent by a stage waiting
for a particular resource per unit of data processed’. For every stage
Stq at Level-1 of target query Qtq , we add an IE vertex at Level-
2 for every resource (scheduling queue, CPU, Memory, Network,
IO) used by stage Stq , and store the value of its wait-time for this
resource per unit data processed as its Vertex Contribution (VC).

2.1.2 Level-3: Deep Explanations (DE):. Level-3 captures the hosts
responsible toward the corresponding disproportionality in the wait
time components for every resource. That is, DEs keep track of the
wait-time distributions per unit of data processed by stage Stq for
a specific resource r on each host h of execution. That is, for each
IE node in Level 2, we add h DE nodes in Level 3 corresponding to
all hosts on which the tasks of Stq executed.

2.1.3 Level-4: Blame Explanations (BE): . Blame Explanations
is a novel contribution of iQCAR. For each vertex v in Level-3 (DE)
corresponding to Stq , host h, and type of resource request r , if tasks
of Stq were concurrent with tasks of P stages of other queries on
host h, we add P nodes u in Level 4 and connect them to v . To
compute the blame to be assigned to a concurrent stage, we first
compute the blame from a source task (task of concurrent stage) to
a target task executing concurrently on host h while using resource
r and use it to compute the VC of each BE node.

2.2 Architecture
iQCAR provides a cluster interface to analyze existing Spark work-
load execution logs, submit new Spark applications, or simulate an
existing workload using TPCDS [5] benchmark queries.

wlSEL and wlSUB: The workload selection module (wlSEL) al-
lows users to select a pre-executed workload for analysis. To let
users simulate a workload on Spark, the workload submission in-
terface (wlSUB) allows them to select a list of benchmark TPCDS
queries, the order of these queries and finally their arrival schedule
(fixed-delay or poisson or user-input start times). The users can also
specify the interval (in seconds) for collecting the task execution
metrics. By default, we collect metrics after the completion of each
task, stage, job, or query in Spark.

Figure 2: iQCAR Architecture

iQCARCORE: The offAGGRmodule collects and aggregates clus-
ter logs for queries executed on Spark offline, and parses them. For
an online execution analysis, the onAGGR module collects the exe-
cution metrics using the REST API interface of Spark 2 and streams
them through our streaming module to a MySQL database. The
data model builder module (dmBUILD) uses this input to build the
data model for iQCAR. An admin can configure whether to persist
this data model in a CSV format or MySQL store. By default, we
store in a CSV format for later easy integration with our iQCARViz
API. iQCAR also provides an easy export from our MySQL store to
the iQCARViz data frames and series objects. Users use hints from
the iQCARViz interface (described shortly) to select a list of target
queries for deep exploration. The graph builder module (grBUILD)
uses our parallel graph construction algorithm (see [7]) to build
iQC-Graph using the Neo4j graph API [2]. By default, we persist
a Neo4j graph instance for every workload, and reload the graph
when user requests for a deep exploration of the selected target
queries through the iQCARViz interface.

blameAnalyzer:A graph-basedmodel enables us to consolidate
the contention and blame values for a systematic deep exploration.
To enable a comparison of contention impacts at various levels
of iQC-Graph, the blameAnalyzer consists of three modules that

2We extended the Spark metrics accumulator API to publish our custom wait-time
metrics for all resources (scheduling delay, CPU, Network, Memory, and IO blocked
times) to the REST interface.

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1722

iQCAR: A Demonstration of an Inter-Query Contention Analyzer for Cluster Computing FrameworksSIGMOD’18, June 10–15, 2018, Houston, TX, USA

Figure 3: iQCAR visual aids for answering cluster-level contention analysis questions.

calculate the following contention measures: The Vertex Contribu-
tion (VC) values are computed using the VC-calc that measures the
standalone impact of any vertex toward the contention faced by a
target query. The VC values of different vertices depend on the level
to which the vertex belongs to, and are computed during the graph
construction process as described in Section 2.1. We then perform a
top-down pass on this graph to update the edge weights using the
IF-calc, and next do a bottom-up pass to update the responsibility
measure of each vertex using the DOR-calc. The Impact Factor (IF)
of an edge gives the impact a source vertex of the edge has toward
the end vertex. Degree of Responsibility (DOR) of a vertex is defined
as the cumulative impact this vertex has toward a target query.

rlGEN and rlAPP: The rule generator (rlGEN) module uses the
consolidated contention measures from blameAnalyzer and out-
puts two types of rules: (i) Alternate Query Placement: rlGEN out-
puts the top-k aggressive queries (high-impact toward all selected
target queries) and generates k rules that recommend placing each
of these queries in a new pool with new recommended shares for
each of them. (ii) QueryPriority Readjustment: rlGEN produces
k priority rectification rules for each of the top-k affected target
queries that suffered the highest impact, and top-k impacting source
queries. The rlAPPmodule is an extension to the Spark standalone
scheduler that parses the rules and applies any active and applicable
rules during a recurring execution of the workload.

iQCAR VIZ : The iQCAR visualization module is a web based
front-end that enables users to (i) select a workload for analysis us-
ing our wlSELmodule and visualize its key characteristics using the
wlVIZ interface, (ii) explore summary of query execution and clus-
ter performance using the perfVIZ interface that provides tips on
selecting a single target query or a set of target queries for further
exploration, (iii) delve into the task-level execution and wait-time
distribution details for each query using the dmVIZ interface, (iv)
perform a systematic deep exploration of the Neo4j iQC-Graph that
lets users unfold explanations at various levels and analyze the rela-
tive impacts from concurrent queries using the grVIZ visualization
aids, and (v) finally, use the rlVIZ module that lets users compare
the results of applying a selected set of rules on the recurring exe-
cution of the workload. The iQCARViz interface also allows users
to compare the impact of different monitoring intervals of data
collection on our contention analysis metrics. Each of the visual-
ization modules use the iQCARViz dataframes API to render plots
dynamically based on user-input online using Plotly [3] tool.

3 DEMONSTRATION
The purpose of this demonstration is to (i) showcase the users the
tedious process of contention analysis in the absence of iQCAR,

(ii) enable users with a hands-on experience of using iQCAR for
insightful analysis, and (iii) present users an opportunity to compare
and contrast the results of applying the iQCAR rules on a benchmark
workload’s performance. To achieve these goals, we will divide the
demo in three segments, namely (a) manual analysis of pre-executed
TPCDS benchmark execution, (b) deep exploration of contentions
using iQCAR, and (c) analyze the output of iQCAR.

(a) (b)

Figure 4: (a) Screen to select aworkload for contention analy-
sis. (b) Screen to perform a time-series analysis of iQC-Graph.

Setup: Users will be given two options to analyze a workload: (i)
select a pre-executed microbenchmark workload, or (ii) submit
a workload by selecting a set of TPCDS queries along with their
arrival pattern. A sample screen for this workload selection is shown
in Figure 4a. The workloads will be executed on a 10-node cluster
setup with Apache Spark 2.2 [11] and Hadoop 2.7 [6].

3.1 Segment 1: Manual Analysis
Users will be asked to answer one randomly selected multi-choice
question on the contention faced by a query using the existing
monitoring tools like Spark UI [4] and Ganglia [1]. This activity will
demonstrate the tedious process of performing a manual contention
analysis even on a small-size cluster.

3.2 Segment 2: Explore iQCAR
The next step in our demo is to explore the interface of iQCAR that
will enable users answer questions like below divided broadly into
the following three categories based on the level of contention
details they provide:

SummaryQuestions:Users can choose to browse through a series
of cluster summary visual aids for our sample workloads illustrated
in Figure 3.
● Q1: Which hosts in the cluster had the highest CPU contention?
● Q2: On which resource were all queries bottlenecked the most?
● Q3: Which queries are the victim of highest contention?

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1723

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Prajakta Kalmegh, Harrison Lundberg, Frederick Xu, Shivnath Babu, Sudeepa Roy

(a) (b) (c)

Figure 5: (a) Screen to aid users identify queries for further exploration. It shows the runtime hit of all queries compared
to their unconstrained (no contention) execution time. (b) Screen to aid users identify stages of a selected query for further
exploration. (c) iQCAR visualization to select combinations of a host, resource and source queries to analyze impact on a single
selected target query.

● Q4: Which queries are the cause of highest contention?

TargetQueryPerformanceAnalysisQuestions: Figure 5a shows
how iQCAR provides a visual aid for users to select a target query
for further deep exploration from a set of completed queries in a
workload. Next, Figure 5b shows how users can choose whether
they want to analyze contentions on (i) a single stage, (ii) all stages
on the critical path (execution time dominating path), or (iii) all
stages of a query using iQCAR. For performing a single-query anal-
ysis, users can drill-down to various levels of details by filtering
on hosts, resources or specific stages of target and source queries
as shown in Figure 5c to explore the impact on a particular target
query Qt . This interface allows users to answer questions like:
● Q5: On which user-selected combination of host h and resource
r , has a target query Qt (or its selected stages) spent maximum
time waiting?
● Q6:Which queries are responsible for causing highest contention
for a target query Qt (or its selected stages) on a user-selected
combination of host h and resource r?

Source Query Performance Analysis Questions: Finally, users
can also perform a top-down analysis on iQC-Graph to draw in-
sights on how a query impacts or causes contentions to others using
various filters on its stages, hosts, and resource types. Due to space
constraints, the screenshots for these visualizations are not shown.
● Q7: Which queries were affected most by the contention caused
by a source query Qs (or its selected stages) on a user-selected
combination of host h and resource r?

The above visual aids help users get answers to questions Q1 to
Q7 rapidly. For users who want to diagnose each contention in de-
tail, the iQC-Graph visualization provides a step-wise exploration
opportunity. For instance, users can click on each vertex and edge to
view the values of our contention analysis metrics (VC, IF, and DOR).
Other interface features will let the users (i) highlight the path from
a single source query to a target query with highest path weight
(useful for providing explanations for highest impact between any
two queries), (ii) display all paths with path weights crossing a
certain threshold of user-input impact value (useful to discover
contention conditions beyond an acceptable threshold), and (iii)
load source queries that impact the selected target queries only
within an user-input time frame. Figure 4b shows the iQC-Graph

for our example workload for the last scenario where user inputs
the start and end times to input a time frame for impact analysis.

3.3 Segment 3: Analyze iQCAR results
The final segment in the demo will enable users to examine a set of
rules output by the rlGEN module of iQCAR. Users will be able to
compare the performance of the workloads (new runtime of each
query, wait-times on all resources and/or hosts) after application of
the top-3 rules of each type. Users can also use the recommended
priority to choose and apply the rules for a more real-time experi-
ence.
RelatedWork: The field of explanations has been studied in many
contexts like analyzing job performance [8]. In [9], the authors
present a general framework to analyze data-analytical workloads
using blocked-time metric. We use this pedestal to present iQCAR
as a first systematic tool toward exploration of different levels of
explanations for resource contentions on cluster frameworks. A
detailed discussion on related work is presented in [7].

Acknowledgment. This work was supported in part by NSF awards
IIS-1423124, IIS-1552538, IIS-1703431, and NIH Award 1R01EB025021-
01.

REFERENCES
[1] 2018. Ganglia Monitoring System. http://ganglia.info. (2018).
[2] 2018. Neo4j: A graph database. https://neo4j.com. (2018).
[3] 2018. Plotly: Modern Visualization for the Data Era. https://plot.ly. (2018).
[4] 2018. Spark Monitoring and Instrumentation. http://spark.apache.org/docs/

latest/monitoring.html. (2018).
[5] 2018. TPC Benchmark™DS . http://www.tpc.org/tpcds/. (2018).
[6] Doug Cutting. 2018. Apache Hadoop. http://hadoop.apache.org. (2018).
[7] Prajakta Kalmegh, Shivnath Babu, and Sudeepa Roy. 2017. Analyzing Query

Performance and Attributing Blame for Contentions in a Cluster Computing
Framework. CoRR abs/1708.08435 (2017). arXiv:1708.08435 http://arxiv.org/abs/
1708.08435

[8] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. 2012. Perfxplain:
debugging mapreduce job performance. PVLDB 5, 7 (2012), 598–609.

[9] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making Sense of Performance in Data Analytics Frameworks. In
NSDI. 293–307. https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/ousterhout

[10] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. 2010. Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling. In Proceedings of the 5th European
conference on Computer systems. ACM, 265–278.

[11] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets (HotCloud). 10–10.

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1724

http://ganglia.info
https://neo4j.com
https://plot.ly
http://spark.apache.org/docs/latest/monitoring.html
http://spark.apache.org/docs/latest/monitoring.html
http://www.tpc.org/tpcds/
http://hadoop.apache.org
http://arxiv.org/abs/1708.08435
http://arxiv.org/abs/1708.08435
http://arxiv.org/abs/1708.08435
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout

	Abstract
	1 Introduction
	2 iQCAR System
	2.1 Multi-layered iQC-Graph
	2.2 Architecture

	3 Demonstration
	3.1 Segment 1: Manual Analysis
	3.2 Segment 2: Explore iQCAR
	3.3 Segment 3: Analyze iQCAR results

	References

