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We study the problems of max/top-k and clustering when the comparison operations may be performed by
oracles whose answer may be erroneous. Comparisons may either be of type or of value: given two data
elements, the answer to a type comparison is “yes” if the elements have the same type and therefore belong
to the same group (cluster); the answer to a value comparison orders the two data elements. We give
efficient algorithms that are guaranteed to achieve correct results with high probability, analyze the cost
of these algorithms in terms of the total number of comparisons (i.e., using a fixed-cost model), and show
that they are essentially the best possible. We also show that fewer comparisons are needed when values
and types are correlated, or when the error model is one in which the error decreases as the distance between
the two elements in the sorted order increases. Finally, we examine another important class of cost functions,
concave functions, which balances the number of rounds of interaction with the oracle with the number of
questions asked of the oracle. Results of this article form an important first step in providing a formal basis
for max/top-k and clustering queries in crowdsourcing applications, that is, when the oracle is implemented
using the crowd. We explain what simplifying assumptions are made in the analysis, what results carry to
a generalized crowdsourcing setting, and what extensions are required to support a full-fledged model.
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1. INTRODUCTION
Max/top-k and clustering/group-by are fundamental operations for database queries.
The implementation of these operations involves value comparisons (“Is a > b?”) for
max/top-k, and type comparisons (“Are a and b of the same type?” e.g., belong to the same
group) for clustering. When the data elements being compared are simple, for example,
integers or strings, and when the clustering is based on the value of a field of a tuple,

This is an extended version of the paper titled “Using the Crowd for Top-k and Group-by Queries” that
appeared in the International Conference on Database Theory (ICDT) 2013.
This work was supported in part by NSF grants IIS-0803524, IIS-0911036, IIS-1115188, IIS-1302212,
European Research Council under the FP7, ERC grant MoDaS, agreement 291071, and by the Israel Ministry
of Science.
Authors’ addresses: S. Davidson and S. Khanna, Department of Computer and Information Science, Univer-
sity of Pennsylvania, Philadelphia, PA 19104; T. Milo, Department of Computer Science, Tel Aviv University,
Israel 6997801; S. Roy (corresponding author), Department of Computer Science and Engineering, University
of Washington, Seattle, WA; email: sudeepa@cs.washington.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in
other works requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
0362-5915/2014/12-ART35 $15.00
2014 Copyright held by the owner/author(s). Publication rights licensed to ACM.
DOI: http://dx.doi.org/10.1145/2684066

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 35, Publication date: December 2014.



35:2 S. Davidson et al.

as in SQL group-by queries, one may assume the comparisons are performed correctly.
However, when the data elements are complex, such as an image, the comparisons are
less straightforward and may therefore result in errors.

As an example, consider an application in which we have a database of unlabeled
photos, PhotoDB, where each photo focuses on a single person (e.g., Alice standing in
front of Niagara Falls or Bob in front of the Louvre, but not of Alice and Bob standing
together). Using PhotoDB, we now wish to: (1) group (cluster) the photos by the person
they represent; and (2) find the most recent photo of each person or, alternatively,
the five most recent photos of each person (max/top-k). Using an SQL-like syntax and
assuming that PhotoDB has a single attribute photo, this query could be represented
as follows.

SELECT Most-recent(photo)
FROM PhotoDB
GROUP BY Person(photo)

Since the database does not have attributes representing the person in the photo or
the date that the photo was taken, the user-defined function Person groups photos of
the same person, and the aggregate function Most-recent selects the single photo that
is the most recent one within the group.1 The Person function, which recognizes when
two photos are of the same person, could be possibly performed by photo processing
software; however, it may result in errors, especially if the pictures are spread over a
time span of 20 years during which the person ages from childhood to an adult. The
Most-recent function could be calculated using the date that a photo was taken as
captured by the camera, but again may not be completely trustworthy if the photos are
contributed by several different people who have different (or no) date/time settings in
their camera.

Crowdsourcing is also increasingly being used to implement user-defined functions
such as Person and Most-recent [Franklin et al. 2011; Marcus et al. 2011b]. In partic-
ular, the crowd has been used to obtain high-quality labeled image or text datasets for
clustering or classification solutions in computer vision, natural language processing,
or social media analysis [Li and Perona 2005; André et al. 2014, 2012; Rashtchian
et al. 2010; Fernández and Gómez 2008] (e.g., classifying photos as forests, mountains,
streets, kitchen, office, etc.), or to create sessions of coherent research papers in a con-
ference by the community clustering approach [André et al. 2013]. The crowd has also
been used to find the top photos or captions that match a given concept, top candidates
for a given position, or the best Facebook profile that matches a given person [Rastegari
et al. 2011; Venetis et al. 2012; Polychronopoulos et al. 2013].

In our application, whether photo processing software, the crowd, or some combina-
tion of the two is used, the user-defined functions will result in errors. We therefore
model such functions as oracles whose answers may be erroneous, and which are used
by the system in one or more rounds of interaction; the system may ask multiple oracles
the same question to reduce the error probability, and may decide which questions to
ask in the next round based on the answers obtained in the previous one. Given two
data elements, the answer to a type question is “yes” if the elements have the same
type and therefore belong to the same group or cluster; the answer to a value ques-
tion orders the two data elements. The assumption here is that there is an underlying
ground truth but that the oracle may make mistakes, that is, may not correctly identify
two pictures as being of the same person (type error) or of one picture of a person being

1This is an abuse of SQL GROUP BY notation but operates on a similar principle: an “equivalence” function is
being used to group tuples, and a single value is calculated over the nongrouped attributes.
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Table I.
Summary of our results for constant ϵ, δ > 0 and the dependence on ϵ, δ can be found in the referenced
theorems.

Problem Inputs Assumptions Results
Max/Top-k n elements, k, f is Max: n + o(n)

error function f strictly growing (Theorem 4.2)
and (a lower bound on) Top-k: n + o(nk) + O(k2)

f is known (Corollary 4.8)
Clustering n elements Upper bound: O(nJ log n)

(number of clusters Lower bound: #(nJ)
J is not needed) (Theorem 5.1)

Clustering n elements, Upper bound:
with correlated α (an upper bound on) α O(αJ + n log(αJ))
type and value (ref. Section 3.4) is known (Theorem 6.1)

Max n elements No error (also for top-k):
with O(log log n)-approximation

concave cost Constant error:
function O(log n)-approximation

(Theorems 7.2 and 7.6)

more recent than another picture of this same person (value error). Our algorithms
must therefore be designed to take this into account.

The standard approach to model this error is to assume some fixed probability of
getting an incorrect answer. In particular, one can assume that each type or value
comparison is answered correctly with a constant probability > 1

2 , which reflects the
assumption that the oracle is always better than a random yes/no answer; we call this
the constant error model. For value comparisons, we propose a more interesting error
model motivated by human behavior which we call the variable error model. Here the
error is related to how close the elements are in the ordering of interest. For example,
if a value question involves two pictures of the same person, one from her high-school
graduation and the other her retirement, it is easy for humans to decide which is the
most recent. However, if the value question involves two pictures of the same person
separated by a year or two, it is much harder to decide which is the most recent.

The oracle may also have an associated cost per question. For example, if crowdsourc-
ing is used, this could be the cost per Human Interaction Task (HIT), as in Amazon
Mechanical Turk; more generally, it could be the amortized cost of the software used
(e.g., complex image processing software or a crowdsourcing platform). To model this
cost, the standard approach is to assign a fixed cost per question, that is, asking one
question has a cost of 1 and asking N questions has a cost of N, regardless of who/what
the questions are asked of, or what type the questions. There are also other, more
complex cost functions that are especially relevant for crowdsourcing, in particular
concave cost functions in which asking many questions at once of the oracle is cheaper
than asking the questions individually. In other words, the cost of asking N questions
followed by M questions is more expensive than asking N + M questions at once.

Using these error and cost models, we formalize the max/top-k and clustering prob-
lems when the comparison operations are performed by an oracle whose answers may
be erroneous, and give efficient algorithms that are guaranteed to achieve the desired
results with high probability. Our results are summarized as follows (also shown in
Table I).

Max/top-k. Finding max/top-k under the constant error (and fixed cost) model has
been thoroughly studied. Feige et al. [1994] show that, when each value question is
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answered correctly with probability ≥ 1
2 +ϵ for a constant ϵ, there is a simple algorithm

to find the maximum with probability ≥ 1−δ using O(n log 1
δ
) questions; they also show

this bound is tight. We review this algorithm in Section 4 and go on to show that, using
our novel variable error model, a much better upper bound on the cost can be obtained:
Suppose the two elements being compared by a value question are % apart in the sorted
order on values. Then the probability of error is ≤ 1

f (%) for a monotone nonnegative error
function f with superconstant growth rate (called a strictly growing function; refer to
Section 3.3), that is, the error in the answer decreases when the distance % between
the elements increases. For max and top-k (with small values of k), we show that
n + o(n) value questions are sufficient to find the answers with high probability given
any strictly monotone error function f (Theorem 4.2). Here o(n) denotes a function of
n that is strictly asymptotically smaller than the linear function.

Clustering. For the general clustering problem using the fixed-cost model, we give
a lower bound of #(nJ), where J is the number of clusters. This bound holds even
for: (1) randomized algorithms; (2) when the answers to the type questions are always
correct; and (3) the value of J is known by the algorithm (Theorem 5.1). We show
this bound is essentially the best possible by providing a simple algorithm that com-
pares O(nJ) pairs of elements by type questions; if the answers to the type questions are
erroneous, the number of questions increases by a factor of O(log n) to output the clus-
ters with high probability. Our algorithm does not require any a priori knowledge of J.

Correlated type and value. There are also scenarios where type and value questions
are used together, such as in the example we having been using so far where we want
to find max/top-k elements from each cluster of individual photos. A simple solution
is to first find the clusters by running an algorithm for the group-by queries (type
questions), and then find the top answers in each cluster by running an algorithm for
top-k queries (value questions). However, this solution can be improved in cases where
the types and values are correlated, either fully or partially, using the correlation to
reduce the total number of questions asked. Full correlations trivially exist when the
elements are assigned their types by partitioning the sorted order according to their
values. If we restrict our PhotoDB example to the photos of a single person sorted ac-
cording the dates they were taken (value), the photos can be partitioned into different
groups like young child (0–9), preteenager (10–12), teenager (13–19), twentysomething
(20–29), thirtysomething (30–39), and so on. As another example, suppose that we have
a database of hotels in a city where the hotels are sorted according to their average
price (value) and are assigned a price category (type) for example, high, middle, low,
partitioning the sorted order. On the other hand, there can be partial correlation be-
tween values and types. If the hotels were to be clustered by districts or neighborhood
as done in Web sites like hotels.com or booking.com, then there would be a high cor-
relation between the district and the average price of a hotel. For instance, in most
cities, downtown hotels are on average more expensive than hotels in the outskirts.
Here a correlation exists between the neighborhood (type) of a hotel and its average
price (value). A similar partial correlation is expected to exist when the type of a hotel
in a given district is its quality (e.g., star ratings) and the value is its average price
(which may depend on other factors like location).

We formalize the scenario when the types and values are correlated, and show that
O(n log J) type and value questions in total (with additional logarithmic factors for
erroneous answers) are sufficient when elements of the same type form contiguous
blocks in the sorted order (called the full correlation case). In the partial correlation
case, there are at most α − 1 changes in type between any two elements of the same
type in the sorted order by value. We show that in this case O(αJ +n log(αJ)) questions
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(with logarithmic factors) suffice (Theorem 6.1). We also discuss the problem of finding
the max/top-k elements from each cluster.

Concave cost functions. Finally, we studied a general class of cost models based on
concave functions. Nonnegative concave cost functions are important since they exhibit
subadditive behavior: asking the oracle many questions at once is cheaper than asking
the questions individually. Finding an optimal algorithm for an arbitrary cost function
turns out to be nontrivial, even if there are no comparison errors, that is, the oracle
returns the correct answer for each comparison. We therefore study approximation
algorithms that return the exact answer by paying a total cost not much worse than
optimal and prove that, for any monotone nonnegative concave function, there exists
an O(log log n)-approximation algorithm to find the max when there are no comparison
errors. We then discuss how these algorithms can be extended to find the top-k, and
close by discussing how to extend the algorithms to the constant error model.

The primary motivation for this work is its application to crowdsourcing. In partic-
ular, the variable error model is motivated by how humans seem to behave, as in the
scenario involving correlated type and value; the use of concave cost functions is also
particularly relevant for crowdsourcing applications. The preceding results therefore
form an important first step in providing a formal basis for max/top-k and clustering
queries when the oracle is implemented using the crowd. However, we make several
simplifying assumptions that are not completely realistic. For example, error is not
constant among users as some will be better at performing particular tasks than oth-
ers, and there may be spammers. There may also not be a total order on data elements,
or the ordering may not be detectable when elements are extremely close, for example,
if the time between two pictures of the same person is a matter of minutes or hours,
no-one would be able to tell which is the most recent. Furthermore, when operations
are grouped together in a single human task, the answers are no longer independent.
There may also be a bound on the number of operations that a crowd member is willing
to perform in a single human task no matter how high the reward, for instance, for lack
of available time. In general, the crowd is very hard to model precisely and algorithmic
results in this setting should be tested by experiments. Nevertheless, results in this
article provide an important formal foundation that can be used as a basis for investi-
gating the more general real-life model. For example, the lower bounds naturally carry
over to the generalized model and can serve as a yardstick on what could be expected
from the performance of such algorithms; and the principles employed in the upper
bound algorithms can serve as basis for appropriate extensions in practical algorithms
for generalized crowdsourcing models.

Roadmap. After reviewing related work in Section 2, we present the model and
definitions that will be used throughout the article in Section 3. Results on max and top-
k (value comparisons) for the variable error model are given in Section 4, while results
on clustering (type comparisons) are given in Section 5. In Section 6, we consider the
case when values and types are correlated, and give an improved clustering algorithm
using both type and value questions. Results for concave cost functions are presented in
Section 7. Finally, we conclude in Section 8 with a detailed discussion of the simplifying
assumptions that we make, and directions for extensions and future work.

2. RELATED WORK
Crowdsourcing is a topic of recent interest to the database community and has been
suggested as a method for data cleansing, data integration, entity resolution, schema
expansion, and data analytics; see, for example, Guo et al. [2012], Selke et al. [2012],
Wang et al. [2012], Baharad et al. [2011], and Liu et al. [2012]. Different crowdsourced
databases like CrowdDB [Franklin et al. 2011], Deco [Parameswaran et al. 2011], Qurk
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[Marcus et al. 2011a], and AskIt! [Boim et al. 2012] have been built. These systems
help decide which questions should be asked of the crowd, taking into account various
requirements such as latency, monetary cost, quality, etc.

The problem of finding max in the crowdsourced setting has been considered in Guo
et al. [2012]. However, instead of finding the maximum element exactly, Guo et al.
[2012] focus on the judgment problem (given a set of comparison results, which ele-
ment has the maximum likelihood of being the maximum element) and the next vote
problem (given a set of results, which future comparisons will be most effective). Find-
ing the exact solution to these problems is shown to be hard, and efficient heuristics
are proposed that work well in practice. Finding max in crowdsourced settings has also
been considered in Venetis et al. [2012]. It provides efficient heuristics and evaluates
them empirically; the results can be tuned using parameters like execution time, cost,
and quality of the result. In a recent paper [Polychronopoulos et al. 2013], the authors
consider the crowdsourced top-k problem in the setting where the unit of task (for
time and cost) is not comparing two elements, but ranking any number of elements.
The error model is captured by potentially different rankings of the same elements
by different people. If many people disagree on the ranking of certain elements, more
people are asked to rank these elements to resolve the conflict in future rounds. The
more general sorting problem is considered in Marcus et al. [2011b], where the authors
aim to minimize the cost of asking questions using the Qurk system by optimization
techniques like batching and replacing pairwise comparisons by numerical ratings.
Similarly, in CrowdDB [Franklin et al. 2011], the system can ask the crowd to check
whether the values of two elements are equal as well as to rank or order a list of ele-
ments, and the results are stored for future queries. The focus of Marcus et al. [2011b] is
mainly on handling different implementation aspects, in contrast to obtaining rigorous
theoretical results, which is the goal of this article.

On the other hand, the problem of finding max/top-k elements in the presence of noisy
comparison operators has been extensively studied in the theory community. Our work
is closest to Feige et al. [1994] who consider the more standard constant error model,
where the probability of getting a correct answer while comparing two elements is a
constant > 1

2 (i.e., the answer is better than a random answer). We compare our work
with Feige et al. [1994] in detail in Section 4, and show that we obtain better bounds
for max and for small values of k in top-k when the error function in the variable error
model is strictly monotone. Other error models for noisy comparisons have also been
considered in the literature (see the references in Venetis et al. [2012] and Guo et al.
[2012]). For instance, Ajtai et al. [2009] assume that, if the values of two elements being
compared differ by at least δ for some δ > 0, then the comparison will be made correctly;
when the two elements have values that are within δ, the outcome of the comparison
is unpredictable. Indeed, it may be impossible to compute the correct maximum under
this model for certain inputs. However, the authors show that the maximum can be
obtained within a 2δ-additive error with O(n3/2) comparisons and #(n4/3) comparisons
are necessary (they also generalize these upper and lower bounds). In contrast, even
under the constant error model, the correct maximum can be computed with high
probability with O(n) comparisons.

A related problem studied in the machine learning community is that of learning to
rank in information retrieval (see Liu [2009] for a survey). Ranking is a critical com-
ponent in applications like search engines, collaborative filtering, question answering,
online advertisement, etc., where the ranking function is responsible for matching the
processed queries with the available results. In Burges et al. [2005], the authors in-
vestigate learning ranking using gradient descent methods and probabilistic cost func-
tions. An active exploration strategy is proposed in Radlinski and Joachims [2007] that
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helps ranking functions in search engines train faster from the available clickthrough
data.

The clustering problem in the crowdsourced setting has been considered in Gomes
et al. [2011]. However, the goal of Gomes et al. [2011] is to define cluster types instead of
only classifying the elements. It also assumes that workers may have different cluster-
ing criteria and each worker only has a partial view of the data. Their paper proposes a
Bayesian model of how the workers can approach clustering, which is in contrast to our
model where we assume a fixed (but unknown) set of clusters partitioning the elements.
On the other hand, Yi et al. [2012] consider the setting where, given the annotations
obtained through crowdsourcing for a small subset of the objects, the objective is to
cluster the entire collection of objects using their low-level features. Previous work has
also considered filtering data items based on a set of properties that can be manually
verified [Parameswaran et al. 2012], and also entity resolution using crowdsourcing
[Wang et al. 2012]. In a recent work [Whang et al. 2013], the authors have considered
the related entity resolution problem: given a number of elements, find those that refer
to the same entity. Similar to our type questions, Whang et al. [2013] ask the crowd to
check whether two elements represent the same entity. However, the focus of Whang
et al. [2013] is to find the best set of questions to maximize the expected accuracy of
the F1-metric (harmonic mean of the precision and recall) against an unknown gold
standard (pairs of elements from the same entity), assuming the answers are always
correct. Another related problem, that of finding the centroid of a dataset, is studied in
Heikinheimo and Ukkonen [2013]. To the best of our knowledge, our work is the first
to formally study the problem of finding the exact clusters in the crowdsourced setting
assuming a ground truth on the clusters, and to study the correlation between types
and values.

Apart from the standard unit cost function where the cost is measured in terms of the
number of comparisons, in this article we study the problem of finding the maximum
element under monotone nonnegative concave cost functions. This class of functions
exploits economy of scale using the subadditivity property and has been studied for
many optimization problems in the literature (e.g., Fotakis and Tzamos [2013] and
Guisewite and Pardalos [1991]).

3. PRELIMINARIES
In this section we present preliminary notions and formally define the problems that
we study in this article.

There are n elements x1, . . . , xn. Each element xi is associated with a type (denoted by
type(xi)) and a value (denoted by val(xi)). We denote by J the number of distinct types.
Types induce a partition of the elements into J clusters, where each cluster contains
elements of the same type. The clusters are balanced when the ratio of maximum and
minimum cluster size is O(1), that is, when each cluster has about n/J elements. The
values of the elements are distinct and there is a total order on the values, that is, for
any two elements xi and xj , either val(xi) > val(xj) or val(xj) > val(xi). For simplicity,
we will use xi > xj instead of val(xi) > val(xj) when clear from the context. From now
on, we will assume the elements are indexed in decreasing order of their values, that
is, x1 > x2 > · · · > xn.

In the PhotoDB example mentioned in the Introduction, each photo is an element.
The type of a photo is the person appearing in the photo, while the value of a photo is
the age of the person in the photo (or the date when the photo was taken). The number
of clusters J is the number of distinct people in the PhotoDB database. Since some
people may appear in many more photos than others, the clusters are not necessarily
balanced. Note that the name or age of the individuals may not be explicitly recorded
in the photos, but that there is an underlying ground truth.
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3.1. Top-k and Group-by Database Queries
If we consider the elements as tuples in a relational setting, then the types and values
of the elements can be assumed to be two different hidden attributes of the tuples that
are not explicitly mentioned in the database. In a simple top-k query, we assume that
only elements of the same type (from the same cluster) are present. Here the goal is
to find the maximum or the top-k elements having the highest values (the smallest
elements can be found similarly). As an example, consider the scenario where a person
accesses only her photos in the database and wants to find the most recent photo, or
where someone wants to find the most recent photo of a place of interest given a number
of such photos. That is, there is a preprocessing step that selects a set of photos of in-
terest from IndividualPhotoDB; we will call this set MyPhotoDB. The value of a photo is
the date when it was taken. This query can be expressed as follows, where Most-recent
is a function that asks value queries to the comparison oracle (e.g., the crowd) to se-
lect the most recent photo (recall that the photos do not have an explicit date attribute).

SELECT Most-recent(photo)
FROM MyPhotoDB

On the other hand, the goal of a simple group-by query is to group together those
elements having same types, that is, to find the clusters as mentioned before. An
example group-by query that clusters the photos based on the individuals appearing
in them and counts the size of each cluster is the following (recall that the photos do
not have an explicit person attribute, and the grouping is implemented asking type
queries to the comparison oracle to compare the persons in the photos).

SELECT count(*)
FROM PhotoDB
GROUP BY Person(photo)

Note that a simple top-k query uses only value queries, whereas a simple group-by
query uses only type queries. However, top-k and group-by queries can be combined in
the natural way when we want to find the top-k/maximum element from each group,
as in the example database query given in the Introduction.

3.2. Questions Asked to the Comparison Oracle
As previously mentioned, a comparison oracle is used to compute the functions “Most-
recent(photo)” or “GROUP BY Person(photo)” in the preceding queries. This is done by
posing questions to the oracle that ask it to compare types or values of two elements,
followed by some computation performed within the system; these calculations can
be performed in rounds. In our model, the oracle can be asked either a type question,
that is, given two elements xi and xj , whether type(xi) = type(xj), or a value question,
that is, given two elements xi and xj , whether val(xi) > val(xj). Note it is possible to
compare the values of two elements of different types, as we will do in Section 6. The
answers to these questions are always “yes” or “no”; in particular, we cannot ask what is
the type or value of a given element. This is motivated by crowdsourcing applications,
since the crowd may not know the exact date when the photo was taken, who the
person is in the photos they are shown, or where are the places of interest. From now
on, we use “queries” to denote database group-by or top-k queries, and “questions” or
“comparisons” to denote the type or value questions asked of the oracle.

Independence assumption. We assume that the answers of two different questions
asked of the oracle are mutually independent. This simulates a crowdsourcing setting
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in which the same person compares different pairs of elements (at least one of the
elements differs) and answers them independently. For unit cost, we can assume the
oracle models different crowd workers. Therefore, even if the same pair of elements
is compared multiple times by the oracle to reduce the probability of error, we receive
independent answers. On the other hand, for concave cost functions as discussed in
Section 7, the oracle is asked a batch of questions at the same time. As long as each
batch contains different comparisons (no two pairs have the same two elements), we
assume the answers from the oracle are independent. Note that, in some settings, the
answers from the same person may not be independent due to implicit biases, which
we leave as future work.

3.3. Error Model
Although each element has a fixed type and a fixed value, we assume the comparison
oracle may return incorrect answers. For example, due to differing skill levels or the
amount of time and effort spent, the answers returned by the crowd may be erroneous.
We first model the potential noisy answers by a simple and standard error model for
the questions: both type and value questions are answered correctly with probability
≥ 1

2 + ϵ, where 0 < ϵ ≤ 1
2 . For simplicity, we assume ϵ is the same for both type and

value questions, but the results obtained are similar if they are different. This ensures
that the answer returned by the oracle is always correct with higher probability than
a random “yes” or “no” answer returned with probability 1

2 . We call this the constant
error model.

For the max/top-k problem, we will see the effect of a more refined variable error
model for value questions, where the probability of error decreases when two elements
that are far apart in the total order on values are compared. For instance, given two
photos of an individual, it is easier for the crowd to decide which one has been taken
earlier if the time difference between the photos is 10 years rather one week. We
formalize this concept as follows: A function f : N → R≥0 is monotone (respectively,
strictly monotone) if, for all n1 ≥ n2, f (n1) ≥ f (n2) (respectively, f (n1) > f (n2)).2 In
addition, f is said to have a superconstant growth rate3 if f (n) = ω(1), that is, as
n → ∞, f (n) → ∞. We call a function f strictly growing if f is strictly monotone and
f (n) = ω(1)4. In the variable error model, given two distinct elements xi, xj such that
xi > xj , the probability of error

Pr[xj is returned as the larger element] ≤ 1
f ( j − i)

, (1)

where f is a strictly growing function, f (1) ≥ 2+ϵ′, ϵ′ > 0 is a constant. The conditions
f (1) ≥ 2 + ϵ′ ensure that, even if xi and xj are consecutive elements in the total order,
that is, j = i + 1, the probability of error is ≤ 1

2 − ϵ for some constant ϵ > 0. In other
words, the probability of making the right decision is also strictly greater than 1

2 . Note
that, when f (%) = 2 + ϵ′ for all inputs %, the variable error model is the same as the
constant error model for value questions.

2N, R, and R≥0, respectively, denote the set of natural numbers, the set of real numbers, and the set of
nonnegative real numbers.
3We will frequently use the standard notation O() and #() for asymptotic upper and lower bounds, and o()
and ω() for strict asymptotic upper and lower bounds, respectively [Cormen et al. 2009]. We will also use the
notation Õ() or '̃() that hides the associated logarithmic terms in an expression.
4Note that a function can be only monotone or only with superconstant growth rate, for instance, f (n) =∑n

j=1
1
2 j is strictly monotone but is not ω(1). On the other hand, if f (n) = 2 for n ≤ 10 and = n2 otherwise,

then f is not strictly monotone but is ω(1).
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The function f is called the error function, which we assume known. We discuss the
problem of estimating f in Section 8 (which we leave as future work), but note that
a lower bound on f is sufficient for our algorithms although a better lower bound on
f will give a better upper bound on the number of comparisons. In a crowdsourcing
application with human oracle, f can have different rates of growth depending on the
dataset and skill level of the crowd. For instance, when the set of n photos spans a
timeline of a few weeks, the probability of error in ordering them according to the
age of people is likely to be high, even when the oldest and most recent photos are
compared. However, if the n photos span a timeline of over 20 years, the probability of
error is much smaller when the first and last photos are compared. In Section 4, we
will study the effect of different error functions on the number of questions asked to
the comparison oracle.

There is a natural “value-based” alternative to the “ranking-based” variable error
model described previously, where the error probability is a monotone function of the
difference in values of the two elements being compared, instead of the difference in
their ranks in the sorted order. In this value-based variable error model, inequality (1)
becomes

Pr[xj is returned as the larger element] ≤ 1
f (xj − xi)

.

The upper bounds given in this article for the ranking-based variable error model also
hold for the value-based variable error model when xi ≥ xi+1+1 for all i ∈ [1, n−1]. Then

1
f (xj−xi )

≤ 1
f ( j−i) , that is, the value-based error is bounded above by the ranking-based

error.

3.4. Problem Statements
The problems studied in this article are as follows.

(i) Max and top-k. Here our goal is find the maximum and, in general, the top-k
elements having the highest values in order to compute top-1/top-k functions in
the queries. In other words, assuming without loss of generality that x1 > x2 >
· · · > xn, we want to find x1 (for max) or x1, . . . , xk (for top-k) only using value
questions (the elements are assumed to have the same type).

(ii) Clustering. Here we want to find the J clusters using type questions grouping
together elements having the same type. This allows us to find the groups in
group-by queries.

(iii) Clustering with correlated types and values. The problem stated earlier uses only
type questions to cluster the elements. However, sometimes the types and values
of elements are highly correlated. For instance, consider the average price (value)
of rooms in a hotel (elements) versus their quality (type). When we sort rooms in
the same hotel according to their price, it is likely that rooms of similar quality
(e.g., standard versus deluxe) will form a contiguous block in the sorted order on
their value. This we call the full correlation case. On the other hand, consider the
average price (value) of hotels in a district (elements) versus their quality (type).
When we sort the hotels according to their average prices, the hotels of similar
quality (star-ratings) are expected to form “almost” contiguous blocks in the sorted
order (due to other factors like location). This we call the partial correlation case.
In this problem, once again, we want to find the J clusters for group-by queries,
however, we use both type and value questions in order to exploit any correlation
between types and values.

The prior intuition is formalized as follows (see Figure 1 for an example). Suppose
x1 > x2 > · · · > xn. There are at most α changes in types of elements in the sorted order
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Fig. 1. Examples of (a) full correlation; (b) partial correlation with α = 4 (there are at most α − 1 = 3
changes between any two elements of the same type). Here n = 12 elements are identified with x1, . . . , x12.
There are three clusters T1, T2, T3, that is, J = 3. The values of the elements are also shown, for example,
val(x1) = 50, val(x2) = 45, etc.

between any two elements of the same type for some value of α. Formally, consider
any two elements xi > xj such that type(xi) = type(xj). There exists a value5 of α,
α ∈ [1, n−1], such that between xi and xj there are at most α −1 elements xℓ, i ≤ ℓ < j,
where type(xℓ) ̸= type(xℓ+1). For instance, when type(x1) = type(xn) and all other
elements have distinct types, α = n− 1. On the other hand, when α = 1, we get the full
correlation case. In general, when the value of α is small, the clusters are nearly sorted
according to the values of the elements in them, and we get the partial correlation
case. We will show that fewer type and value questions in total are needed compared to
type questions needed in the standard clustering problem when the value of α is small.
We also discuss how we can find top-k elements from each cluster using both type and
value questions (for queries using both top-k/max function and GROUP BY clause).

Objective. Errors in the answer to value and type questions result in errors in the
answer to a database query. Therefore, we seek to find solutions to the queries that are
correct with high probability: given any constant δ > 0, our goal is to find the exact
max/top-k elements or the exact clusters with probability 1 − δ.

A dominant cost factor in crowdsourcing applications is the number of questions
being asked. This is because answering may incur monetary cost, involves human
effort, and may be slow. Therefore, we will provide upper and lower bounds on the
cost to solve the aforesaid problems by counting the total number of type and value
questions in the presence of comparison errors, so the bounds will depend on the error
function f, ϵ, and δ. On the other hand, in Section 7, we will consider the class of
concave cost functions to study max/top-k problems where the number of comparisons
is not necessarily proportional to the total cost paid. Instead of minimizing the number
of comparisons, our goal in this setting will be to minimize the total cost incurred by
the algorithms. Note that there are other natural cost functions such as the latency or
number of rounds of questions asked of the crowd, which we leave as future work.

5For positive integers a, b, where a ≤ b, [a, b] denotes the interval a, a + 1, . . . , b.
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All logs used in the article refer to logarithms with base 2 unless stated other-
wise. Next we discuss the three problems mentioned before in Sections 4, 5, and 6,
respectively.

4. MAX AND TOP-K
The problem of finding the maximum and top-k elements with faulty comparisons has
been extensively studied in Feige et al. [1994] under the constant error model. When
value comparisons are performed by the crowd (i.e., when the comparison oracle is a
person), the probability of error is likely less when two elements far apart in the sorted
order are compared, which can reduce the number of questions asked of the crowd.
This motivates the study of max and top-k problems under the variable error model
given by inequality (1) in the previous section. In this section we show that, when
the error function f in inequality (1) is strictly monotone and f = ω(1), only n + o(n)
value questions are sufficient to find the max or the top-k elements for a small value
of k (which is typically the case in practice) with high probability. We start with the
algorithm for finding max in Section 4.1, and then use this algorithm as a building
block to find the top-k elements in Section 4.2.

4.1. Finding Max
Suppose x1 > x2 > · · · > xn. Given δ > 0, we want to find x1 with probability ≥ 1−δ using
a small number of value questions. When the answers to value questions are correct,
n−1 questions are necessary and sufficient to find x1. On the other hand, in the constant
error model where each value question is answered correctly with probability ≥ 1

2 + ϵ
for a constant ϵ, Feige et al. [1994] give a simple algorithm to find the maximum with
probability ≥ 1 − δ using O( n

ϵ2 log 1
δ
) questions (we sketch the algorithm later). They

also show that this bound is tight as stated in the following theorem.

THEOREM 4.1 [FEIGE ET AL. 1994]. For all ϵ > 0, δ ∈ (0, 1
2 ), '( n

ϵ2 log(1
δ
)) value ques-

tions (comparisons) are both sufficient and necessary to find the maximum with proba-
bility ≥ 1 − δ in the constant error model.

Moreover, the proof of the lower bound shows a stronger result when δ + ϵ ≤ 1
2 , that

is, when a high probability of success is needed in spite of a high probability of error.

Observation 1 [Feige et al. 1994]. There exists a constant c > 0 such that at least
(1 + c)n comparisons are needed to compute the maximum with probability 1 − δ for
any δ, ϵ satisfying δ + ϵ ≤ 1

2 .

In this section we show that a much better upper bound can be obtained in the variable
error model that almost matches both the upper bound of n − 1 comparisons when
the value questions are correctly answered, and the lower bound of (1 + c)n stated in
Observation 1. Recall the probability of error for value questions in the variable error
model in terms of the error function f given in (1) in the previous section: the strictly
growing error function f is such that f (1) ≥ 2 + ϵ′, and the probability of error for
comparing two elements at distance % in the sorted order is ≤ 1

f (%) ≤ 1
2 − ϵ, for some

constants ϵ′, ϵ > 0.

The following theorem shows that, for all strictly growing functions f = ω(1), n+o(n)
questions suffice (for constant δ) to find the maximum with high probability. Further,
the number of questions improves to n + O(log log n) when f is at least linear (i.e.,
f (%) = #(%)) and to n + O(1) when f is exponential ( f (%) = 2%).
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Fig. 2. (a) An example comparison tree; (b) upper and lower levels in Algorithm 1; (c) amplified single X-tree
with X nodes and (lower) log X levels.

THEOREM 4.2. For all strictly growing functions f and constant ϵ, δ > 0, n +
o( n

ϵ2δ
log 1

δ
) value questions are sufficient to output the maximum element x1 with prob-

ability ≥ 1 − δ in the variable error model.
Further, if f (%) = #(%), then n+ O( log log n

ϵ2δ2 log 1
δ
) questions are sufficient. If f (%) = 2%,

then n + O( 1
ϵ2 log2 1

δ
) questions are sufficient.

Next we present our algorithm and prove the bounds given in the theorem.

Our algorithm. Our algorithm uses the tournament approach using a balanced com-
parison tree6. Its leaves are grouped into n

2 pairs, the two elements in each pair are
compared using value questions, and the winner (larger of the two elements) propa-
gates to the level above. This is continued until only one element remains as the root
of the tree that is declared as the maximum. Figure 2(a) shows an example comparison
tree that uses n−1 comparisons at n−1 internal nodes assuming there is no comparison
error.

In the presence of comparison errors, our key idea is to choose a random permutation
of the elements x1, . . . , xn that appear as leaves in the tree. We divide the log n levels
of the comparison tree into upper log n

X levels and lower log X levels (see Figure 2(b)).
In the lower levels, only one value comparison is performed at each internal node. In
the upper levels L = log X + 1 to log n, NL comparisons are performed at each internal
node, and a majority vote is taken to decide the larger element. Algorithm 1 presents
our method; the parameter X will be calculated later depending on the nature of error
function f .

ALGORITHM 1: Algorithm for finding the maximum element (X will depend on the error
function f ).
1 Choose a random permutation ) of the elements x1, . . . , xn;
2 for levels L = 1 to log n in the comparison tree do
3 leaves are in level 0, the root is in level log n;
4 If L ≤ log X (lower log X levels), do one comparison at each internal node. Propagate the

winners to the level above;
5 If L > log X (upper log n

X levels), do NL = (2(L − log X) − 1) × O( 1
ϵ2 log 1

δ
) comparisons at

each internal node. Take majority vote and propagate the winners to the level above;
6 end
7 return The element at the root node of the comparison tree.

6In general, a comparison tree can be any binary tree.
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Analysis. The number of nodes at level L is 2log n−L, for L = 1 to log n. The total
number of comparisons performed by the algorithm is

n − n
X

+
log n∑

L=log X+1

NL × 2log n−L ≤ n +
log n∑

L=log X+1

NL × 2log n−L.

We will show that the maximum element x1 is returned with probability ≥ 1 − 6δ; to
obtain the desired 1− δ probability as stated in Theorem 4.2, the algorithm is run with
δ′ = δ/6.

We analyze the upper log n
X levels and the lower log X levels separately: (i) in the

upper levels, we use the algorithm from Feige et al. [1994] that returns the maximum
element with probability ≥ 1−δ; (ii) in the lower levels, we show that x1 does not lose in
any comparison with probability ≥ 1−5δ, even when only one comparison is performed
at each internal node in the lower levels. Therefore, by union bound7, the maximum
element x1 will be returned with probability ≥ 1 − 6δ. Moreover, the chosen value of X
ensures that the number of comparisons in the upper levels is o(n) (for constant ϵ, δ)
for any strictly growing error function f .

Analysis of the upper levels. For the upper log n
X levels, we simply use the fact that

each value question is answered correctly with probability ≥ 1
2 + ϵ, irrespective of the

function f . Then we use the algorithm and bounds given in Feige et al. [1994] for the
constant error model (see Theorem 4.1). We briefly sketch the algorithm for sake of
completeness.

Consider the subtree consisting of the upper log n
X levels, which has n

X nodes. Each
internal node in levels ℓ = 1 to log n

X uses Sℓ = (2ℓ − 1) × O( 1
ϵ2 log 1

δ
) comparisons,

and NL = SL−log X. By a simple application of Chernoff bounds [Motwani and Raghavan
1995], it can be shown that the maximum element can be found with probability ≥ 1−δ.
The total number of comparisons is

∑log n
X

ℓ=1 (2ℓ − 1) × n
X2ℓ × O( 1

ϵ2 log(1
δ
)) = O( n

ϵ2 X) log( 1
δ
).

Therefore, given constant ϵ, δ > 0, to find the maximum element in the upper log n
X

levels with probability ≥ 1 − δ,

it suffices to ask O
(

n
ϵ2 X

log
1
δ

)
value questions. (2)

Analysis of the lower levels. The expression in (2) bounds the number of comparisons
in the upper log n

X levels; the number of comparisons in the lower log X levels is bounded
by n. Next we show there exists a value of X such that n

X = o( n
δ
) for any strictly growing

function f , and the maximum element does not lose in any comparison with probability
≥ 1 − 5δ in the lower levels.

Algorithm 1 starts with a random permutation ) of the elements x1, . . . , xn. Let us
partition ) into block of size (at most) X of consecutive elements. Let us call the sub-
trees of the comparison tree in the bottom log X levels on each block of X elements an
X-tree (the subtrees in Figure 2(b)); the number of X-trees is n

X . The algorithm performs
only one comparison at each non-leaf node of each X-tree.

Consider the X-tree that contains the maximum element in Figure 2(c). Without loss
of generality, assume that the leftmost leaf is the maximum element x1. Consider the
leftmost path of length h to the root of the X-tree. We will compute the probability that
x1 is never eliminated along this path.

7The union bound says that, for any (not necessarily independent) random events X1, . . . , Xℓ, Pr[X1∪· · ·∪Xℓ] ≤∑ℓ
i=1 Pr[Xℓ].
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The height of the X-tree is h = log X. Let rℓ, ℓ ∈ [1, h], be a non-leaf node on the
leftmost path of the X-tree. The right subtree of rℓ will have 2ℓ−1 leaf nodes (see
Figure 2(c)). Note that, if x1 survives all the comparisons in levels 1 to ℓ − 1, in the
internal node rℓ, x1 can only be compared with the nodes in the right subtree of rℓ. For
parameters. %ℓ, ℓ ∈ [1, h], to be decided later, we will bound the following probabilities.

(1) δℓ = Pr[ at least one leaf in the right subtree of rℓ corresponds to an element from
the set {xj : 2 < j ≤ %ℓ + 1}].

(2) pℓ = Pr[x1 loses the comparison at node rℓ, when none of the leaves in the right
subtree of rℓ corresponds to an element from the set {xj : 2 < j ≤ %ℓ + 1}].

In particular, we prove the following proposition.

PROPOSITION 4.3. There exist values of h = log X and %ℓ, ℓ ∈ [1, h] such that
∑h

ℓ=1 δℓ +∑h
ℓ=1 pℓ ≤ 5δ and n

X = o( n
δ
) for any monotone error function f .

It follows from Proposition 4.3 (using union bound) that the maximum element x1
cannot lose any comparison in the lower levels. Next, we show how the values of h and
%ℓ, ℓ ∈ [1, h], are chosen.

Since ) is a random permutation, given a fixed position of x1, any of the n−1 elements
other than x1 can appear in another given position in ) with probability 1

n−1 . Therefore,
by union bound,

δℓ ≤ %ℓ2ℓ−1/(n − 1). (3)

On the other hand, if the right subtree of rℓ does not contain any element from {xj : 2 <
j ≤ %ℓ + 1}, then the minimum distance between the ranks of x1 and the elements in
the right subtree of rℓ is (%ℓ + 2) − 1 = %ℓ + 1. In this case

pℓ ≤ 1
f (%ℓ + 1)

≤ 1
f (%ℓ)

. (4)

Inequality (4) follows from Eq. (1), since f is a monotone function. Given any δ > 0, for
all ℓ ∈ [1, h], we set

%ℓ2ℓ−1

n − 1
= (h − ℓ + 1)δ

2h−ℓ
. (5)

The following lemma gives a bound on
∑h

ℓ=1 δℓ.

LEMMA 4.4. If %ℓ2ℓ−1

n−1 = (h−ℓ+1)δ
2h−ℓ , then

∑h
ℓ=1 δℓ ≤ 4δ.

PROOF. Let S =
∑h

ℓ=1 δℓ ≤
∑h

ℓ=1
(h−ℓ+1)δ

2h−ℓ (from (3)). Then

S = δ + 2δ/21 + 3δ/22 + · · · + hδ/2h−1

S/2 = δ/21 + 2δ/22 + · · · + (h − 1)δ/2h−1 + hδ/2h

⇒ S/2 = δ + δ/21 + δ/22 + · · · + δ/2h−1 − hδ/2h ≤ 2δ

⇒ S ≤ 4δ.

The bound on
∑h

ℓ=1 pℓ is obtained in two steps. First, in Lemma 4.5, we give an
upper bound on

∑h
ℓ=1 pℓ for any monotone function f in terms of h = log X. Then, in

Lemma 4.6, we show there exists a value of X such that
∑h

ℓ=1 pℓ ≤ δ and n
X = o( n

δ
),

which will complete the proof of Proposition 4.3.
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LEMMA 4.5.
∑h

ℓ=1 pℓ ≤ h
f
(

δn
2h

) .

PROOF. By inequality (4) and Eq. (5), %ℓ = (h−ℓ+1)δ(n−1)
2h−1 , and pℓ ≤ 1

f (%ℓ)
. Then

∑h
ℓ=1 pℓ

≤
∑h

ℓ=1
1

f (%ℓ)

=
∑h

ℓ=1
1

f
(

(h−ℓ+1)δ(n−1)
2h−1

) =
∑h

ℓ=1
1

f
(

2(h−ℓ+1)δ(n−1)
2h

)

≤
∑h

ℓ=1
1

f
(

(h−ℓ+1)δn
2h

) (for n ≥ 2, 2(n − 1) ≥ n). Therefore,

h∑

ℓ=1

pℓ ≤
h∑

q=1

1

f
(

qδn
2h

) (6)

≤ h
f
(

δn
2h

) (since f is monotone). (7)

LEMMA 4.6. Given any strictly growing function f and a constant δ > 0, there exists
an h and n0 ∈ N such that, for all n ≥ n0,

∑h
ℓ=1 pℓ ≤ δ, and n

X = n
2h = o( n

δ
).

PROOF. Since f is strictly growing, f is strictly monotone and f (%) = ω(1) (super-
constant growth rate). We choose h as follows.

—h = log n − log log n − log 1
δ
, if f (%) = ω(%).

Then n/2h = log n
δ

= o( n
δ
).

—h = log f (n1/4) − log 1
δ
, if f (%) = O(%). Then n/2h = n

δ f (n1/4) = n
δω(1) = o( n

δ
).

If f (%) = ω(%),
∑h

ℓ=1 pℓ ≤ h
f
(

δn
2h

) (from Lemma 4.5)

= log n−log log n−log 1
δ

f

(
δn
δn

log n

) ≤ log n
f (log n) = log n

ω(log n) = o(1) ≤ δ.

When δ > 0 is a constant, there exists an n0 such that, for all n ≥ n0, the last step
holds.

If f (%) = O(%),
∑h

ℓ=1 pℓ ≤ h
f
(

δn
2h

) (from Lemma 4.5)

= log f (n1/4)−log 1
δ

f
(

δn
δ f (n1/4)

) ≤ log f (n1/4)
f
(

n
O(n1/4)

) = log f (n1/4)
f (#(n3/4)) ≤ log f (n1/4)

f (n1/4) (for large enough n, since f is strictly

monotone) ≤ δ.
For all constant δ > 0, there exists n0 such that, for all n ≥ n0, the last step holds.

Since n
X = n

2h = o( n
δ
), by the expression in (2), the upper level uses o( n

ϵ2δ
log 1

δ
) com-

parisons in total. Combined with the total number of comparisons in the lower levels,
which is ≤ n, and summing up the bad probabilities in the upper and lower levels by the
union bound (from the expression in (2) and Proposition 4.3), the maximum element is
found with probability ≥ 1 − 6δ with n + o( n

ϵ2δ
log 1

δ
) value questions.

The proof of Lemma 4.6 also shows that, when f (%) = ω(%), n + O( log n
δ

log 1
δ
) value

questions suffice. However, Lemma 4.7 shows that better bounds can be obtained when
f (%) = #(%) or f (%) = 2%, by a tighter analysis using inequality (6). The proof of the
lemma appears in Appendix A.1.
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LEMMA 4.7. Given any δ > 0:

(1) for exponential error function, ∃ X such that n
X = O(log2 1

δ
) and

∑h
ℓ=1 pℓ ≤ δ;

(2) for linear error function, ∃ X such that n
X = O( log log n

δ2 ) and
∑h

ℓ=1 pℓ ≤ δ;

(3) for logarithmic error function, ∃ X such that n
X = O( n

1
1+δ

δ
δ

δ+1
), and

∑h
ℓ=1 pℓ ≤ δ.

Substituting the value of n
X in the expression in (2), the better upper bounds for

functions f such that f (%) = #(%) or f (%) = 2% in Theorem 4.2 can be obtained. This
completes the proof of Theorem 4.2.

4.2. Finding Top-k
Suppose x1 > x2 > · · · > xn. Given an integer k, Feige et al. [1994] have given an algo-
rithm to find the top-k elements x1, . . . , xk in the constant error model. This algorithm
uses O(n log min(k,n−k)

δ
) comparisons to find the k-th largest element with probability

≥ 1 − δ. For simplicity, assume k ≤ n
2 , that is, min(k, n − k) = k.

In practice, for database top-k queries, the value of k is likely to be much smaller
than the total number of elements n. When the value of k is small, a better bound on
the number of value comparisons can be obtained using Theorem 4.2 in Section 4.1
and the algorithm given in Feige et al. [1994] with strictly growing error functions. In
particular, we show the following corollary to Theorem 4.2 that solves the top-k problem
with high probability.

COROLLARY 4.8. For all strictly growing functions f and constant ϵ, δ > 0, n +
o( nk

ϵ2δ
log k

δ
) + O( k2

ϵ2δ
log k

δ
) value questions are sufficient to output all the top-k elements

x1, . . . , xk with probability ≥ 1 − δ.
Further, if f (%) = #(%), then n + O( k log log n

ϵ2δ3 log k
δ
) + O( k2

ϵ2δ
log k

δ
) value questions are

sufficient. If f (%) = 2%, then n + O( k2

ϵ2δ
log k

δ
) value questions are sufficient.

When k = O(1) and δ > 0 is constant, we once again get a bound of n + o(n) even
to find all the top-k elements with high probability, which exceeds n only by lower-
order additive terms. Note that, even when the comparisons are exact, the linear-time
recursive selection algorithm [Blum et al. 1973] requires cn comparisons for a constant
c > 1 to find the k-th element (although it works for all values of k). The same guarantee
of n+ o(n) can be obtained for any k = o(

√
n), when the error function f (%) = #(%) (the

growth rate is at least linear). The algorithm in Feige et al. [1994] gives a better bound
for other error functions and values of k.

As an aside we note that, for any fixed δ > 0, when the answers to value questions
have no errors and when k = o(

√
n), our techniques give a bound of n + g(k, δ) on the

value comparisons for finding the top-k elements with probability ≥ 1 − δ. Here g(k, δ)
is a polynomial function of k and 1

δ
independent of n (see Appendix A.2).

To conclude this section, we sketch how we can obtain Corollary 4.8 using Theo-
rem 4.2; the details are given in Appendix A.3. Once again, we use a comparison tree
and start with a random permutation of the elements in the leaves of this tree. We also
divide the log n levels of the comparison tree into lower log X levels and upper log n

X
levels. In the lower levels, we have n

X X-trees. We show there is a value of X such that
with high probability each of x1, . . . , xk appear in different X-trees so that they are the
maximum elements in their respective X-trees. In all the X-trees we use Algorithm 1,
and argue that all of x1, . . . , xk are the winners in their respective X-trees with high
probability. Therefore, in the upper log n

X levels, x1, . . . , xk remain to be the top-k ele-
ments. In the upper levels, which have n

X elements, we use the top-k algorithm from
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Feige et al. [1994]. We show that the total number of questions asked of the oracle is
given by the expressions in Corollary 4.8. We also argue that the total probability of
error (the probability that exactly x1, . . . , xk is not returned) is bounded by δ so, with
probability ≥ 1 − δ, we find the top-k elements.

5. CLUSTERING
In this section we study the clustering problem motivated by group-by queries. Recall
that there are J distinct types, and the goal of the clustering problem is to find the
J clusters, that is, those groups of elements having the same type. Instead of value
questions used in the previous section for the max and top-k problems, here we will
use type questions, that is, the oracle is asked to decide whether two elements have
the same type, for instance, whether two photos capture the same person or place.

We prove the following theorem which gives a bound on the number of type questions
that are necessary and sufficient to find the exact J clusters. In our algorithms, we do
not assume J is known a priori—when a set of questions regarding a photo database
is asked, the crowd (oracle) may not know the number of people participating in the
database. However, our (tight) lower bounds hold even when the value of J is known.
Recall that we assume the constant error model for type questions, that is, each type
question is answered correctly with probability ≥ 1

2 + ϵ, for a constant ϵ > 0.

THEOREM 5.1. For all ϵ, δ > 0, to group n elements into J clusters with probability
≥ 1 − δ, O( nJ

ϵ2 log n
δ
) type questions in expectation are sufficient in the constant error

model.
On the other hand, #(nJ) type questions are necessary: (i) even if the algorithm is

randomized; (ii) even when answers to all type questions are exact; and (iii) even when
the value of J is known.

The basic idea of the clustering algorithm is to scan the list of elements iteratively.
In each iteration, all remaining elements having the same type as the first element
in the list are collected as a new cluster (along with the first element) and deleted
from the list. Since there are J clusters, the list will be empty after J iterations (even
without prior knowledge on the value of J) assuming no comparison errors. To handle
comparison errors, each pair of elements is compared multiple times and a majority
vote is taken; the pseudocode is given in Algorithm 2.

ALGORITHM 2: Algorithm for clustering
1 List the elements in an arbitrary order L;
2 Initialize a set for clusters P = ∅;
3 while L is not empty do
4 Let y be the first remaining element in L;
5 Create a new cluster C = {y};
6 /* Find elements with the same type as y among the remaining elements in L */
7 Scan L; for each remaining element x in L
8 Compare the types of x, y by asking the type question type(x) = type(y)
9 O( 1

ϵ2 (log n
δ
)) times.

10 If the majority of the answers are “yes”
11 /* x, y are decided to have the same type */
12 C = C ∪ {x};
13 Remove x from L;
14 /* otherwise do nothing */
15 Add the cluster C to P.
16 end
17 return the clusters in P.
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Proof of upper bound. Here we argue that Algorithm 2 finds the J clusters with high
probability. With appropriate choices of constants, by the Chernoff bound, whether
the elements x, y compared in step 8 have the same type is decided incorrectly with
probability ≤ δ

n3 . Since J ≤ n, nJ ≤ n2. By union bound, with probability ≥ 1 − δ
n, for

all pairs of elements considered by the algorithm whether they have the same type is
decided correctly. When the type comparisons are correct, it is easy to check that the
correct clusters are returned in J iterations. This happens with probability ≥ 1 − δ

n.
Note that, in each iteration, at least the first remaining element from the list L is

deleted, therefore the loop is run at most n times. However, as argued earlier, with
probability ≥ 1 − δ

n, the number of iterations of the while loop is J (when the clusters
are correctly returned), and with probability ≤ δ

n, the number of iterations is ≤ n.
Hence the expected number of iterations is O(J). In each iteration, at most O( n

ϵ2 log n
δ
)

type questions are asked, therefore, in expectation, the bound given in Theorem 5.1
follows.

Proof of lower bound. First we give the proof of lower bound for the deterministic
algorithm, when there is no error in the answers to type questions (exact comparisons),
and when the value of J is known. Then we prove the lower bound for randomized
algorithms.

Lower bound for deterministic algorithms. Let smax be the size of the maximum
cluster in an instance, and smin be the size of the minimum cluster. Recall that the
instance is called balanced if smax/smin = O(1). We will prove the lower bound of #(nJ)
for deterministic algorithms even when the clusters are balanced.

Consider any deterministic algorithm A that solves the clustering problem. Let us
number the clusters arbitrarily as C1, . . . , CJ . The adversary starts by assigning 2n/3J
elements to each of the clusters C1, C2, . . . , CJ and reveals these elements for free to A
(therefore, algorithm A knows the value of J). At this point, the number of unassigned
elements is n/3. Let this be the set U . The adversary now plays an evasive game on this
set U . An element x ∈ U is active iff it has been compared with ≤ (J−1)/2 elements. For
an active element, whenever the algorithm Aasks a question involving it, the answer is
always “no”. Once an element ceases to be active, it has at least J−(J−1)/2 = (J+1)/2
valid clusters among C1, . . . , CJ to which it can still be assigned. We always assign it to
a cluster with smallest number of elements, breaking ties arbitrarily. This ensures that
no cluster Ci ever gets assigned more than n/3

(J+1)/2 < 2n/3J elements from U . So the
minimum cluster size is 2n/3J (recall that all clusters initially had 2n/3J elements),
and the maximum cluster size is 4n/3J. The ratio is bounded by 2. The total work done
is clearly #(nJ).

Lower bound for randomized algorithms. We next show that an #(nJ) lower bound
holds for randomized algorithms as well, even when all type comparisons are exact.
By Yao’s min-max principle [Motwani and Raghavan 1995], it suffices to exhibit a
distribution on input instances such that any deterministic algorithm needs #(nJ)
comparisons in expectation with respect to this distribution.

Suppose the clusters are C1, . . . , CJ. For each element, we randomly choose j ∈ [1, J]
and assign it to cluster Cj . Let us call an element x to be settled if either the algorithm
performs J −1 comparisons involving x or if the algorithm performs a type comparison
between x and some element y whose result is a “yes”. Note that, to cluster all n
elements, each element must be settled. This is because if ≤ J − 2 comparisons are
performed involving x and all of the comparisons return “no”, there are still at least
two clusters where x can go. Next we compute the expected number of comparisons
needed to make an element settled by a “yes” answer.
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Suppose ℓ comparisons have been performed involving x, all of which answered “no”.
Since the type of each element is chosen uniformly at random, under the previous
assumptions, for any element x that has participated so far in ℓ type comparisons, each
of which resulted in a “no”, the probability that the next type comparison returns a
“yes” is bounded by 1

J−ℓ
. The probability that each of the first ℓ type comparisons of x

returns a “no” is at least J−ℓ
J . Thus, the expected number of type comparisons before

an element gets a “yes” answer is at least
∑J

ℓ=1 ℓ × 1
J−ℓ

× J−ℓ
J = J+1

2 . Therefore the
expected number of comparisons for an element to get settled is #(J). Since every type
comparison involves exactly two elements, it follows by linearity of expectation that the
total number of type comparisons is #(nJ). We leave the exact bound for randomized
algorithms for the balanced case as an open problem.

6. CLUSTERING WITH CORRELATED TYPES AND VALUES
In the previous section, we used only type questions for clustering that compares
whether two elements have the same type. We showed that, to cluster n elements into
J clusters, '̃(nJ) questions are necessary and sufficient. However, as mentioned in
Section 3.4, types and values can be correlated in some scenarios and elements of the
same type can form (almost) contiguous blocks in the sorted order according to the
values (e.g., quality of hotels as types versus their prices as values). We formalized this
idea assuming at most α changes in types between any two elements of the same type.
In this section we will see that this bound improves to Õ(n log J) when α is small and
both type and value questions are asked. Note that both value and type questions are
answered correctly with probability ≥ 1

2 + ϵ, given a constant ϵ > 0.

THEOREM 6.1. Given any δ > 0, it is sufficient to ask O((n log(αJ) + αJ) 1
ϵ2 log n

δ
) type

and value questions in expectation to cluster n elements into J clusters with probability
≥ 1 − δ.

As in the previous section, we do not assume that the value of J is known a priori,
however, we assume the value of α (or an upper bound on α) is known. In this section
we will also explain why the bound given in the preceding theorem is tight in a certain
sense, and briefly discuss how top-k/maximum elements from each of the J clusters
can be found with high probability using both type and value questions.

When α = 1, we have the full correlation case where elements from the same type
exactly form contiguous blocks in the sorted order on values. When the value of α is
small, we have the partial correlation case. First we present Algorithm 3 for the full
correlation case where we also assume the answers to type and value questions are
exact (there is no comparison error) and analyze this algorithm. Then we discuss how
erroneous answers to type and value questions can be handled and how the algorithm
can be extended for general α.

6.1. Clustering for Full Correlation
Since the elements from the same cluster form contiguous blocks in the sorted order on
the values, a simple algorithm will sort the elements using O(n log n) value questions,
and then scan the sorted order to find elements from the same cluster by comparing
consecutive elements using O(n) type questions. Here we give an algorithm that im-
proves the number of value and type questions from O(n log n) to O(n log J), where J
is the number of clusters and typically much smaller than n.

Algorithm 3 identifies those elements at the boundaries of the clusters in the sorted
order in O(n log J) time. This is achieved by iteratively partitioning the list of input
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ALGORITHM 3: Algorithm for clustering for the full correlation case (of types and values)
1 List all elements in L in an arbitrary order;
2 Initialize link(y) = null for each element y;
3 Set repeat loop = true;
4 while repeat loop is true do
5 Let s = |L|;
6 Initially, the entire L forms a single interval;
7 while |L| > s/2 do
8 /* The total number of elements in L is not halved */ ;
9 if each interval has exactly one element then

10 repeat loop = false; break;
11 end
12 else
13 /* Divide each interval in half to form two smaller intervals */
14 for each interval B with two or more elements do
15 Find the median of the elements in B;
16 Partition the elements in B in two halves comparing with the median using

value questions;
17 Each of these two halves forms a new interval, say B1 and B2. B1 and B2

respectively contain elements greater and less than the median;
18 for both Bi, i ∈ {1, 2} do
19 Check if Bi has at least two types (then it is called an active interval):

The first element y in Bi is compared with each of the other elements z
in Bi to check if there is a z such that type(y) ̸= type(z);

20 if Bi is active then
21 Do nothing;
22 end
23 else
24 /* All elements in Bi have the same type, keep only one, delete the

rest */
25 Choose an arbitrary element y from Bi ;
26 For the other elements z ̸= y in the interval, set link(z) = y. Delete

z;
27 end
28 end
29 end
30 end
31 end
32 end
33 /* There may be successive blocks in the list L with single elements that are from the same

cluster. Group them by a linear scan */
34 while L is not empty do
35 Let x be the first element in L. Scan L. Let y be the next element in L;
36 while type(y) = type(x) and y is a valid element (i.e., the end of list is not reached) do
37 Assign link(y) = x. Delete y from L. Let y be the next element in L;
38 end
39 Remove x from L. /* link(x) remains null */
40 end
41 return all elements y with their link link(y)

elements around their median log J times into blocks, and discarding all but one
element from blocks that only contain elements from the same cluster.

Since the clusters do not have any name to identify them, Algorithm 3 forms the
clusters as a forest of trees. For each cluster C, except one element in C, each element
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Fig. 3. An illustration of execution of Algorithm 3 on the example of full correlation in Figure 1: (a) First
iteration of the outer loop; (b) the second (and last) iteration of the outer loop. The final output of the
algorithm with link structure is also shown in (b).

y stores a pointer link(y) that points to another element z in the same cluster (i.e.,
type(y) = type(z)). We argue that, when the algorithm finishes, the links form a tree for
each cluster and there is exactly one element with null link that forms the root of this
tree. Clearly, from this forest the clusters can be output in O(n) time. The execution of
Algorithm 3 on the example in Figure 1(a) is illustrated in Figure 3.

Analysis. We first analyze Algorithm 3 assuming the answers to all type and value
questions are correct. Note that we assign link(z) = y if and only if type(y) = type(z),
therefore we never set link(z) incorrectly for any element z. Also, whenever an element
z is deleted (step 26), another element y such that type(y) = type(z) is retained, that is,
we never delete all elements from a type. Further, as link(z) = y is set, we delete z from
the list so the link structure is always acyclic. Therefore, we argue that the algorithm
returns exactly one element y from each type such that link(y) = null, then the links
form a tree structure that proves its correctness.

For sake of analysis, consider the elements x1 > · · · > xn in sorted order. In the full
correlation case, elements from the same type form contiguous blocks in the sorted
order. We argue that the two while loops in the algorithm keep exactly one element
from each such block.

The algorithm tries to identify these blocks by dividing the list of elements (presented
in an arbitrary order L) into intervals. As long as there is one interval with more than
two types, the interval is partitioned into two halves by the median, which also ensures
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that all elements before (respcectively, after) the median are greater (respcectively,
smaller) than the median. Therefore, by repeatedly finding the medians, we divide the
list of elements into intervals such that all elements of any earlier interval are larger
than all elements in any interval after. When the variable repeat loop is set to FALSE,
only one element from each block (i.e., from each cluster) is retained, and the others
are in sorted order of their values in L. However, two consecutive elements in L can be
from the same cluster. They are grouped together by a linear scan on L and only one
element of the same cluster is retained. These remaining elements with null link are
returned by the algorithm as root of the trees of the clusters.

Number of questions asked. The following lemma bounds on the total number of type
and value questions.

LEMMA 6.2. The total number of type and value questions used by the algorithm is
O (n log J) assuming the answers to these questions are correct.

PROOF. First we compute the total number of questions asked in each iteration of
the inner while loop (step 7). Let us count unit cost for the repeated value and type
questions in steps 15, 16, and 19. Consider the first for loop with original intervals
in step 14. Let the number of intervals be b, and let the number of elements in these
intervals be n1, . . . , nb. Since the intervals are disjoint, n1 + · · · + nb ≤ s. In the j-th
interval, the linear-time selection algorithm [Blum et al. 1973] can find the median
using O(nj) value questions (step 15) and the partition can also be done using O(nj)
value questions (step 16). This for loop further partitions the intervals into two disjoint
intervals B1, B2. In the inner for loop (step 18), only one element from each interval is
compared with the other elements using type questions, hence the total number of type
questions in B1, B2 is O(nj). Therefore, the total number of value and type questions in
the outer for loop (step 14) is

∑b
i=1 O(nj) = O(s).

Next we compute the number of iterations in the inner while loop. Consider the
contiguous blocks of elements of the same type in the sorted order. Since there are
J clusters, the number of blocks is J. Suppose the algorithm reduces the number of
elements in P iterations of the inner while loop. Then the number of elementes at the
start of the while loop s is divided into 2P intervals. When 2P = 4J, at most J intervals
may be active (two or more types). The active intervals have ≤ s/4 elements in total.
Each interval is of size s/4J and one element is retained from each inactive interval,
hence the number of remaining elements will be s/4+ s/4J ≤ s/2. Therefore, the while
loop will terminate in P = O(log J) iterations.

Now we compute the number of questions in the outer while loop in step 4. The inner
while loop ensures that the problem size s is halved in each of its iterations. Hence
the number of questions Q(n) with input size n is captured by the following recurrence
relation (counting unit cost in steps 16 and 19).

Q(n) = Q
(n

2

)
+ O(n log J). (8)

The solution of this recurrence relation is O(n log J).

Handling erroneous answers to type and value questions. Here we discuss how erro-
neous answers to type and value questions can be handled using standard techniques.
When type and value comparisons are correct, cn log J questions suffice for some con-
stant c. Now consider the case when the comparisons are erroneous, but correct answers
are returned with probability ≥ 1

2 + ϵ, for constant ϵ > 0. In this case we repeat each
type or value comparison performed by Algorithm 3 between two elements O( 1

ϵ2 log n
δ
)

times and take the majority vote (omitted in the algorithm for simplicity) to decide
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whether they have the same type, or to order them according to their values. This adds
the multiplicative 1

ϵ2 log n
δ

factor in the total number of questions asked. Moreover, we
abort the algorithm after comparing cn2 pairs of elements (note that we do not assume
the value of J is known).

With appropriate choices of the constants, by the Chernoff bound, the answer to
each type and value comparison between any two elements is correct with probability
≥ 1 − δ

cn2 . By union bound, the total bad probability in the cn log J ≤ cn2 comparisons
is bounded by δ. Hence, with probability ≥ 1 − δ, all the comparisons are correct and
the previous analysis holds. The expected number of questions asked by the algorithm
is O(n log J) × O( 1

ϵ2 log n
δ
), where cn log J comparisons are performed with probability

≥ 1 − δ and cn2 comparisons are performed only with probability ≤ δ. This proves
Theorem 6.1 for the full correlation case.

6.2. Extension to General α
For arbitrary α, there are at most α changes in types between any two elements of
the same type. Again partition the elements in the sorted order x1 > · · · > xn into
consecutive blocks of the same type. Algorithm 3 is run for the case of general α. As
argued earlier, this will give one representative element from each block. However,
now there may be more than one representative element from the same cluster, so we
need to group them together. Further note that these representative elements will be
sorted according to their values due to repeated partitioning using medians of active
intervals.

To group elements of the same types, consider the list of remaining elements L
returned by Algorithm 3. While L is not empty, select the first element y in L. For the
next α elements z in L, check whether y and z have the same type. For all elements z
with type(y) = type(z), set link(z) = y. Delete these elements from S. Then repeat the
procedure with the remaining elements in L (in order).

We already argued in the full correlation case that Algorithm 3 leaves one element
from each consecutive block of the same type. In the additional step to group elements
of the same types, the consecutive α elements in L are examined by type questions.
At most α changes in types are present between the first and the last element of any
cluster in the sorted order. This ensures that all elements of the same type as the first
element y in S will be grouped together. This process is repeated until the list L is
empty, which returns all clusters.

To count the number of type and value questions, note that the number of consec-
utive blocks for general α is ≤ αJ, therefore Algorithm 3 asks O(n log(αJ)) questions
(similar to Lemma 6.2). The additional step to group elements of the same type needs
J iterations. So O(n log(αJ) + αJ) comparisons suffice when the answers to type and
value questions are exact. Errors in the answers can be handled by repeating each
comparison O( 1

ϵ2 log n
δ
) times and taking the majority vote, as described for the full

correlation case.

6.3. Lower Bounds
Let us briefly discuss why the bounds given in Theorem 6.1 are tight up to logarithmic
factors in a certain sense, even when there is no error in the comparisons. Recall that
we proved #(nJ) lower bound for clustering in Section 5. Since α in the worst case is
#(n) (no correlation between types and values), we cannot hope to get a better bound
than O(αJ) for all values of α. Further, there is also a lower bound of #(n log n) which
explains that we cannot get a better bound than O(n log(αJ)) for all values of α and
J. This lower bound follows from the element distinctness problem, that is, given n
elements, check whether any two elements have the same value, which is known to
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have a lower bound of #(n log n) [Ben-Or 1983]. In the reduction, two elements belong
to the same cluster if and only if they have the same value, and a cluster has ≥ 2
elements if and only if the elements are not distinct.

6.4. Max/Top-k from Each Cluster Using Constant and Variable Error Model
When both type and value questions are asked, a natural question to ask is to find
top-k or the maximum element from each cluster (see the query example given in the
Introduction). This can be achieved by combining our results on clustering and top-k:
first find the clusters using Algorithms 2 or 3, and then find the top-k or max from each
cluster using the algorithms in Section 4. Clearly, to guarantee that top-k elements are
found from all clusters with probability ≥ 1 − δ given δ > 0, the value of δ in the max
or top-k algorithm has to be replaced by δ′ = δ

J (when the clusters are constructed,
the value of J is known). The maximum elements from each cluster can be found by
a small modification of Algorithm 2: as each cluster is computed, in addition to type
comparisons between two elements, also compare their values; retain the element with
larger value. We can also use the algorithms from Section 4 for a monotone error
function f to obtain better bounds on the number of questions asked8.

7. MAX AND TOP-K FOR CONCAVE COST FUNCTIONS
So far we have used the fixed-cost model in which each question incurs unit cost,
resulting in a total cost that is the number of comparisons performed. However, when
the crowd is used as the oracle, other monotone cost functions may also be applicable.
In this section, we study the class of nonnegative monotone concave functions as the
cost function.

Definition 7.1. A function g is a nonnegative monotone concave function if: (i) for
all N, g(N) ≥ 0; (ii) for all N1 ≥ N2, g(N1) ≥ g(N2); and (iii) for any N1, N2; and any
t ∈ [0, 1], we have g(tN1 + (1 − t)N2) ≥ tg(N1) + (1 − t)g(N2).

Nonnegative concave functions are interesting since they grow more slowly than linear
cost functions and exhibit the subadditive property:

g(N1) + g(N2) ≥ g(N1 + N2).

Therefore, if many questions are asked together, we pay less than asking the questions
one by one. This is reasonable in a crowdsourced setting since, if we ask a person a
number of questions at the same time, it is likely to require less effort than asking
the questions one by one, requiring her to submit an answer before getting the next
question. Such cost functions display an interesting tension between the number of
rounds and the total number of questions asked in an algorithm since: (1) it is better
to ask many questions in the same batch of the oracle in the same round, rather
than distributing them to many different batches and multiple rounds; but (2) the cost
function is monotone, so we cannot ask an arbitrary number of questions for some of
the cost functions. As an extreme example, for finding the maximum element under the
constant concave cost function g(N) = a, a > 0, we could ask all

(n
2

)
comparisons of the

oracle in the same batch and in just one round for a cost of a; the system will simply
return the element that did not lose in any of the comparisons as the maximum.
However, this is not a reasonable cost function in the crowdsourced setting since a

8Let % and %′ be the distance of two elements having same type in the entire sorted order, and in the sorted
order restricted to the cluster containing them, respectively. Since % ≥ %′, for monotone error function f , the
probability of error in value comparisons 1

f (%) ≤ 1
f (%′) . Therefore, the same error function can be assumed

even when the elements in respective clusters are compared.
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person can be asked a large number of comparison questions and still will be paid the
same. This is not a good strategy for a linear cost function.

Some other standard and more reasonable monotone concave functions are: (i) g(N) =
Na, for a constant a, 0 < a ≤ 1; (ii) g(N) = log N (or log2 N; and other polylogarithmic
functions, or log log N, etc.); and (iii) g(N) = 2

√
log N which grows between Na for

a constant a and polylogarithmic functions. Many optimization problems have been
studied under concave cost functions, such as Fotakis and Tzamos [2013] and Guisewite
and Pardalos [1991].

Interaction between the system and the oracle. As before, we are assuming there is
a system that interacts with the oracle in rounds. In every round i, the system gives
a set of pairs of elements Si (called a batch of questions) to the oracle. The oracle is
responsible for performing comparisons between the elements in each pair (x, y) ∈ Si,
and to return whether or not x < y. The system looks at the answers, performs some
internal computation, decides the set of pairs Si+1 for the next round, and continues
the process. If the oracle receives a set with N comparisons in the same batch, we incur
a cost of g(N) for these N comparisons.

We assume no limit on the maximum size of the batch of questions that can be asked
of the oracle at once. In some crowdsourced scenarios, it may be useful to assume an
upper bound on the batch size, as workers may not be able to answer questions in
a very large batch without error due to fatigue or time constraint. However, if the
maximum batch size is a constant c, the simple tournament algorithm for finding max
gives a constant factor approximation for any concave function g. The lower bound of
any algorithm to find the max (with no error) is (n−1)g(c)

c : n − 1 comparisons must be
performed to find the max, and they cannot be grouped by batch size more than c. On
the other hand, the tournament algorithm that compares two elements and proceeds
with the winner will incur a cost of (n − 1) × g(1), so we get a constant factor cg(1)

g(c)
approximation.

Optimization problem. Under the fixed-cost model, our goal was to minimize the total
number of comparisons performed. However, using an arbitrary concave cost function
g, the total number of comparisons may not be proportional to the total cost under
g—recall the extreme example of g(N) = a. Hence, instead of minimizing the total
number of comparisons, our goal is now to minimize the sum of the cost under g, where
the sum is over all rounds and over all batches of questions asked of the oracle within
each round. We will denote the cost of an optimal algorithm by OPT.

As we will see shortly, finding an optimal algorithm for an arbitrary concave cost
function g is nontrivial even for the simple problem of finding max, and even if there
are no comparison errors (i.e., the oracle returns the correct answer to all comparisons).
Therefore, we will study approximation algorithms that return the exact answer by
paying a total cost not much worse than OPT. An algorithm is a µ(n)-approximation
algorithm for some nondecreasing function µ if, for every input of size n, it can find the
solution (e.g., the maximum element) with a cost ≤ µ(n) × OPT.

In the unit cost model, for no comparison errors, we know that n−1 comparisons are
necessary and sufficient to find the max from n elements, and hence the cost incurred
is also n − 1. However, any standard algorithm (e.g., the tournament algorithm) that
uses n − 1 comparisons uses multiple rounds, and eliminates candidates based on the
results of comparisons from previous rounds. Hence the n − 1 comparisons used by
these algorithms do not translate into g(n − 1) cost according to our payment model.
Nevertheless, g(n− 1) serves as a lower bound for OPT, since any such algorithm must
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use n − 1 comparisons to find the maximum and, since a nonnegative concave cost
function is subadditive, the minimum cost for n − 1 comparisons is at least g(n − 1).

Observation 2. For any nonnegative concave cost function g, OPT ≥ g(n−1), to find
the maximum among n elements even if there are no comparison errors.

We now present two algorithms for finding max under the concave cost model with
no comparison errors, and discuss an extension to top-k. We then discuss algorithms
for max using the constant error model (see Section 3). For no comparison errors, the
algorithms will give the comparisons to the oracle in batches to exploit the subadditive
property of the concave cost function. However, for the constant error model we will
repeat each comparison multiple times and take a majority vote, which will require
us to give each copy of the same comparison to the oracle in different batches (that
simulates comparison by different people) to ensure independence of the answers (see
Section 7.2). The results for the constant error model directly apply to the variable
error model, since the probability of comparison error for the variable error model is
no more than that for the constant one. We leave the clustering problem for concave
cost functions as future research9.

7.1. No Comparison Error Model
We start by considering how the tournament algorithm for finding max, which uses
n−1 comparisons in log n rounds (see Figure 2(a) in Section 4), behaves under different
concave cost functions g. If the cost function g is polynomial, that is, g(N) = Na

for a constant 0 < a ≤ 1, then the tournament algorithm gives a constant factor
approximation. However, but for g(N) = a, for a constant a > 0, the ratio to OPT is
'(log n) (see Appendix A.4). In fact, for any arbitrary cost function g, the tournament
algorithm gives a log n approximation. On the other hand, as mentioned earlier, for
the constant cost function g(N) = a we can do all

(n
2

)
comparisons in the same round

and pay the same cost as OPT = a (the cost incurred by the tournament algorithm
and the one-round algorithm for different concave functions are further discussed in
Appendix A.4). In this section we will study algorithms that give better than log n
approximation for any concave cost function g.

THEOREM 7.2. For any arbitrary monotone nonnegative concave function g, there
exists an O(log log n)-approximation algorithm to find the max if there are no comparison
errors.

We prove this by giving two algorithms (Algorithms 4 and 5) that achieve the de-
sired approximation. Algorithm 4 is simple and easy to implement, whereas the more
complex Algorithm 5 is useful since it can be modified to an algorithm for finding top-k
elements.

Apart from these two algorithms, a result by Valiant [1975] also gives an O(log log n)
approximation for max, although the algorithm is much more complex to implement
than Algorithm 4. Valiant showed that, if P = n processors are available (same as the
total number of elements), then the maximum element can be found in log log n+ const
rounds [Valiant 1975, Theorem 2]. In each round, at most P = n comparisons are
performed, and therefore the total cost incurred is O(log log n)g(n) = O(log log n) · OPT.

Option 1. A simple O(log log n)-approximation algorithm for finding max can be con-
structed by adapting the tournament algorithm so that the depth of the tree is reduced
from log n to log log n. To do so, it combines the results of many comparisons from the

9It can be verified that Algorithm 2 in Section 5 incurs a cost of O(Jg(n)), where J is the number of clusters.
It will be interesting to find an optimal or good approximation algorithm for arbitrary J and g.
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Fig. 4. An illustration of execution of Algorithm 4 First n = 16 elements are grouped into n
2 = 8 pairs, and

the larger elements of each pair form the leaves (Level 0) of the comparison tree. In Level 1, B1 = 2 and
pairwise comparisons are performed of each group of two elements. In Level 2, B2 = B2

1 = 4 and all
(4
2
)

= 6
comparisons are performed in the single group of four elements.

ALGORITHM 4: A simple O(log log n)-approximation algorithm for finding the maximum
element.
1 Group n elements into n

2 pairs, the leaves (level 0) of the comparison tree contain the larger
element from each pair;

2 Let Bh denote the number of children of an internal node in the h-th level (h ≥ 1). Set
B1 = 2 and Bh+1 = B2

h for h > 1;
3 for h = 1 to log log n do
4 Group elements from level h − 1 into blocks of size Bh;
5 Perform all pairs of comparisons in each of these blocks;
6 Propagate the maximum element from each block (which does not lose any comparison)

to an internal node in level i;
7 end
8 return the unique element at the root of the tree as the max.

previous level (see Algorithm 4). We will describe the algorithm using a comparison
tree, but the number of children of nodes will increase in higher levels (h = 0 denotes
the leaves). Let Bh denote the number of children of a node in level h, h ≥ 1, and Nh
denote the total number of nodes in level h, h ≥ 0. In the lowest level, N0 = n

2 . These
n
2 elements are obtained by grouping n elements into pairs and collecting the larger
element by a direct comparison from each pair. In non-leaf levels h, h ≥ 1, Bh elements
from level h − 1 are grouped together to form the children of each node, where B1 = 2
and Bh+1 = B2

h. Further, the max of these Bh elements from level h − 1 is propagated
to level h: this is achieved simply by doing all

(Bh
2

)
comparisons along the edges of a

complete graph of size Bh, and then doing an offline computation to discard all but a
unique element that wins all the comparisons. An example execution of the algorithm
is given in Figure 4.

The following observation shows that the number of candidates for max decreases
rapidly in each level.

Observation 3. For h ≥ 1, Bh = 22h−1 , and Nh = n
22h .
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PROOF. We prove by induction. The base case holds for h = 1. Suppose the hypothesis
holds up to level h. In the h+1-th level, Bh+1 = (Bh)2 = 22×2h−1 = 22h, and Nh+1 = Nh

B2
h+1

=
n

22h ·22h = n
22h+1 .

The following lemma gives the required bound for Theorem 7.2. Note that, to prove the
theorem, it suffices to show that the max can be found in O(log log n) rounds, where in
each round ≤ n comparisons are performed. Since g is subadditive, g(n−1)+g(1) ≥ g(n)
and therefore OPT ≥ g(n − 1) ≥ g(n) − const.

LEMMA 7.3. The number of elements at the level h = log log n is 1, and in each level
at most n comparisons are performed.

PROOF. From Observation 3, when h = log log n, then Nh = 1.
Consider any level h ≥ 1. For each node in level h, ≤ (Bh)2 comparisons are performed.

From Observation 3, the total number of comparisons is at most Nh×(Bh)2 = n
22h ×22h =

n.

Option 2. The second algorithm is based on Pippenger [1987], who uses a fixed-cost
model and gives upper bounds on the number of comparisons for finding max given a
bound on the number of rounds. That paper proves the following theorem.

THEOREM 7.4 [PIPPENGER 1987, THEOREM 3]. For every integer r ≥ 1, there are explic-
itly constructed algorithms that select an element of prescribed rank from among n

elements in r rounds using X = O(n1+ 2r−2

3r−1−2r−2 (log n)2− 2r−1

3r−1−2r−2 ) comparisons.

The algorithm presented is based on comparisons along the edges of an a-expanding
graph in every round: An undirected graph is a-expanding if any two disjoint sets of
vertices, each containing at least a + 1 vertices, are joined by an edge. Based on the
results of the comparisons in the first round, an upper bound can be derived on the
number of candidates for the desired rank using the properties of an expanding graph.
Then the algorithm recursively finds the element of the desired rank in r − 1 rounds.
Both the cost spent in the first round as well as the total cost spent recursively in the
other r − 1 rounds are shown to be O(X).

If we set r = O(log log n), the algorithm runs in O(log log n) rounds. However, it can
be verified that the total cost in the first round itself is O(n log2 n). Therefore, we use
a preprocessing step to reduce the number of candidates of max from n to n

log2 n
in

O(log log n) rounds. Then the number of rounds still remains O(log log n), but the cost
spent in each round reduces to g(O(n)) = O(g(n)), leading to Theorem 7.2. Algorithm 5
combines Pippenger’s algorithm with the standard tournament one (using a balanced
binary comparison tree) to find the max. The following lemma gives the required bound
for Theorem 7.2.

ALGORITHM 5: An O(log log n)-approximation algorithm for finding the maximum element
adapting Pippenger’s algorithm.
1 Given n input elements, run tournament algorithm for 2 log log n levels of a balanced

binary comparison tree;
2 Given all the candidates for max retained by the tournament algorithm, run Pippenger’s

algorithm with the number of rounds r = 2 log log n to find the max;

LEMMA 7.5. Algorithm 5 finds max in O(log log n) rounds, where the cost incurred at
each round is O(g(n)) = O(OPT).
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PROOF. Clearly the first phase of the tournament algorithm runs for O(log log n)
rounds, and in each round ≤ g(n) cost is paid (see Figure 2(a)).

After 2 log log n rounds of the tournament algorithm, the number of candidates for
max is N = n

22 log log n = n
log2 n

. In the second phase where Pippenger’s algorithm is used, the
number of comparisons performed in any given round is bounded by the total number
of comparisons given in Theorem 7.4:

O
(

N1+ 2r−2

3r−1−2r−2 (log N)2
)

= O
(

N · e
ln N

(ln N)
2(log3

2 −1)−1 · (ln n)2
)

= O(N · (ln n)2)
(
since2

(
log3

2 −1
)
− 1 > 1

)
= O(n).

Hence the second phase also has O(log log n) rounds, and the cost paid at each round
is g(O(n)) = O(g(n)) = O(OPT) (for a concave function, g(cn) ≤ cg(n)).

Extension to top-k. We now describe a randomized algorithm based on Algorithm 5
that finds all top-k elements for any k ∈ [1, n] with an expected cost of O(log log n) ·OPT.
Note that it suffices to show that the k-th largest element xk can be found with an
expected cost of O(log log n) · OPT. Then the top-k elements can be found by simply
scanning the rest of the n− 1 elements and finding those greater than xk (we assumed
no two elements have the same value). This additional pass requires n−1 comparisons,
which can be done in a single round. Therefore this additional round requires cost
g(n − 1). Furthermore, the optimal cost for finding top-k is also ≥ g(n − 1), hence the
total expected cost for finding all top-k elements is still O(log log n) · OPT.

The second phase of Algorithm 5 that uses Pippenger’s algorithm can select the
element of any given rank with the same cost (Theorem 7.4). So it suffices to show that
the first phase of Algorithm 5, that reduces the number of candidate elements from n
to N = n

log2 n
, can be modified so that the k-th element xk is retained (although the rank

of xk among the N remaining elements can change from k to k′).
We use the recursive procedure (although for a fewer number of rounds) from the

standard randomized-select algorithm to reduce the number of candidate elements for
xk from n to N = n

log2 n
[Cormen et al. 2009]. The idea is to choose a pivot p at random

(every element is chosen with probability 1
n); partition the rest of the n − 1 elements

based on whether they are greater or less than the pivot p, which would reveal the
rank kp of the pivot (max has rank 1 and min has rank n). If kp = k, return p as the
k-th element; if kp > k, recursively search for rank k among those elements greater
than p; and if kp < k, recursively search for rank k − kp among those elements smaller
than p. In randomized-select, this recursive process is continued until the number of
elements is exactly 1, which is the k-th largest element. However, we will continue this
process only for R = 16 log log n rounds. Note that in every round ≤ n comparisons are
performed, so the cost in each round is ≤ g(n).

Now we show that the number of candidates after R rounds is ≤ n
log2 n

with high
probability. We call a round i ∈ [1, R] good if the rank kp,i of the pivot pi in round i is
∈ [ ni

4 , 3ni
4 ], where ni is the number of candidates in round i, otherwise the round is bad.

Since the pivot is chosen at random from ni elements, the rank of the pivot is between
[ ni

4 , 3ni
4 ] with exactly probability = 1

2 . Hence the expected number of good rounds is R
2 .

Using Chernoff bounds [Motwani and Raghavan 1995], the number of good rounds is
≥ R

4 with probability10 ≥ 1 − e− R
16 = 1 − 1

log n.

10Let X1, . . . , XN be independent binary random variables. Let X = X1 + · · · + XN and µ = E[X]. Then, using

Chernoff bounds, Pr[X ≤ µ(1 − ϵ)] ≤ e− µϵ2
2 .
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Whenever the rank of the pivot kp,i ∈ [ ni
4 , 3ni

4 ], then the number of candidates de-
creases by at least a factor of 1

4 in the following round. If there are ≥ R
4 good rounds,

then the number of candidates after R rounds is ≤ n

4
R
4

≤ n
22 log log n = n

log2 n
; this hap-

pens with probability ≥ 1 − 1
log n. However, we ensure that the number of candidates

always decreases to ≤ n
log2 n

with an expected cost of O(g(n) log log n). To achieve this,
we employ this (standard) procedure: run the recursive process for R = 16 log log n
rounds; if the number of candidates after R rounds is > n

log2 n
(this happens with prob-

ability ≤ 1
log n), simply sort all the n elements and return the k-th element; this can

be done with cost ≤ O(g(n) log n) (e.g., by merge-sort, where the number of rounds in
merge-where sort is O(log n), each round requires O(n) comparisons which are done in
a single, batch, incurring a cost of O(g(n)) in each round). The total expected cost is
≤ g(n)R + O(g(n) log n) × 1

log n = O(g(n) log log n), since R = O(log log n). This completes
the argument for top-k.

7.2. Constant Error Model
We now study concave cost functions for the constant error model where the probability
of getting a wrong answer from the comparison oracle is ≤ 1

2 − ϵ for a constant ϵ > 0.
Recall that Feige et al. [1994] show O(n log 1

δ
) comparisons are sufficient to output max

with probability ≥ 1−δ under the constant error model (Theorem 4.1). This gives a cost
of O(log 1

δ
)×OPT for the linear cost function g(N) = N. The basic idea is to use the tour-

nament algorithm with a binary comparison tree, but repeat each comparison multiple
times and decide the larger element by a majority vote; the numbers of comparisons in
different levels form a convergent series and the total number of comparisons remains
linear in n.

There are two main issues that prohibit us from getting a similar approximation
for an arbitrary concave cost function g: (1) as we argued earlier, now we need to
make payments level by level, for every batch of questions asked; and (2) if each
of N comparisons in a level is repeated M times, they must not be performed in
the same batch so that M independent answers are obtained11. Therefore, although
we perform MN comparisons in that level, we have to call the oracle M times with
batches of size N and therefore we have to pay Mg(N), which can be much larger
than g(MN) (for instance, when g(N) = 1). The following theorem gives a bound on the
approximation factor for polynomial12 and arbitrary concave cost functions g, using the
algorithms already mentioned along with the standard technique of taking a majority
vote. Whether a better approximation can be obtained is left for future research.

THEOREM 7.6. Consider the constant error model where each comparison is correct
with probability ≥ 1

2 + ϵ. Given δ ∈ (0, 1), the max can be found with probability ≥ 1− δ:

(1) with a cost of O( 1
ϵ2 (log log n+ log 1

δ
)) × OPT if g(N) = Na for a constant a, 0 < a ≤ 1;

(2) with a cost of O( 1
ϵ2 (log n+ log log n log log log n

δ
)) × OPT for any arbitrary nonnegative

monotone concave cost function g.

11We assume the comparisons performed by the oracle in different batches are independent, even if the same
pairs of elements are compared. We also assume that the comparisons given to the oracle in the same batch
do not include the same pairs of elements more than once and are independent.
12The polynomial cost function g(N) = Na, where 0 ≤ a < 1 is a constant, is a natural way of modeling
economies of scale.
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The next observation, which relates the number of repetitions in a majority vote with
the probability of obtaining the correct result, directly follows from Chernoff bounds.

Observation 4. If a comparison is repeated M times and the winner is decided by
majority vote, then the probability of error is ≤ e−M ϵ2

1+ϵ ≤ e− Mϵ2
2 .

Finally we prove Theorem 7.6. We again use the fact that OPT ≥ g(n − 1) = g(n) −
const.

PROOF.
For g(N) = Na for a constant a, 0 < a ≤ 1. We use the tournament algorithm with

a binary comparison tree and repeat each comparison M = 2
ϵ2 (ln log n + ln 1

δ
) times13

in each level. At level h, 2log n−h internal nodes exist (h = log n contains the root and
h = 0 contains the leaves). The total cost paid is

∑log n
h=1 Mg(2log n−h) =

∑log n
ℓ=1 Mg(2ℓ−1)

= M
∑log n

ℓ=1 2a(ℓ−1) = M 2a(1+log n)−1
2a−1 = O(Mna) = O(M) × OPT. From h = 1 to h = log n,

the max is compared with log n elements in total at different levels of the tree. By
Observation 4 and by the union bound, max wins all these comparisons with probability
≥ 1 − log n

e
Mϵ2

2
= 1 − δ and therefore is returned at the root of the tree.

For arbitrary concave cost function g. We use Algorithm 4 from the previous section,
but in level h ≥ 1, each comparison is repeated Mh = 2

ϵ2 (2h + ln log log n
δ

) times. Recall
that the number of distinct comparisons at each level is bounded by n (Lemma 7.3).
Then the total cost across all levels is bounded by

log log n∑

h=1

Mh × g(n) = g(n) × 2
ϵ2 ×

log log n∑

h=1

(
2h + ln

log log n
δ

)

≤ g(n) × 2
ϵ2 ×

(
log log n ln

log log n
δ

+ 21+log log n
)

= O
(

1
ϵ2

(
log n + log log n log

log log n
δ

))
× OPT.

Next we argue that the max of n elements survives in all these comparisons. In level h,
max is compared with Bh elements. Since Bh = 22h−1 , by Observation 4 and the union
bound, the total error probability is

log log n∑

h=1

Bh

e
Mh·ϵ2

2

=
log log n∑

h=1

Bh

e2h+ln log log n
δ

≤
log log n∑

h=1

22h

22h+ln log log n
δ

≤ log log n × δ

log log n
= δ.

8. DISCUSSION
In this article, we studied max/top-k and clustering problems in the presence of a
noisy comparison oracle. These problems are motivated by top-k and group-by database
queries in the crowdsourced setting, where the criteria used for grouping and ordering
are difficult to evaluate by machines but much easier by the crowd (e.g., grouping
photos by the individuals featured in them or finding their most recent photo). These
queries are evaluated using the oracle to answer either type or value questions.

Two important factors must be modeled in crowdsourced algorithms: error (since
the crowd may give erroneous answers) and cost (since users must be incentivized

13In this section, ln denotes natural logarithm and log denotes logarithm with base 2 unless mentioned
otherwise.
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to participate, or there may be cost associated with the crowdsourced platform). To
measure error, we adopted the standard constant error model in which each type or
value question is answered correctly by the oracle with a constant probability > 1

2 . We
then introduced a more interesting variable error model for value questions, in which
the error is related to how close the elements are in the ordering of interest. To measure
cost, we adopted the standard fixed-cost model in which N questions have a cost of N,
and then studied a class of cost models based on concave functions in which asking N
questions followed by M questions (or N questions of one person and M questions of
another person) is more expensive than asking N + M questions at once of a single
person (the subadditive property).

Using these error and cost models, we formalized the max/top-k and clustering prob-
lems and gave efficient algorithms guaranteed to achieve the desired results with high
probability. For max/top-k queries under the fixed-cost model, we showed that fewer
questions are needed in the variable error model compared to the constant error model.
For the clustering (group-by) queries under the fixed-cost model, we showed that fewer
questions are needed when there is a correlation between the types and values of the
elements.

An important contribution of this article over Davidson et al. [2013] is the study
of max/top-k in the context of concave cost functions. Since concave cost functions
exhibit the subadditive property, there is an interesting tension between the number
of rounds used in the algorithm and the total number of questions asked. Finding
an optimal algorithm for an arbitrary cost function turns out to be nontrivial, even
if there are no comparison errors. We therefore studied approximation algorithms
that return the exact answer by paying a total cost not much worse that optimal. In
particular, we proved that, for any monotone nonnegative concave function, there exists
an O(log log n)-approximation algorithm to find the max when there are no comparison
errors. We then extended one such algorithm to find the top-k. We closed by discussing
how to extend the algorithms to the constant error model.

Future research. Our simple error and cost models were motivated by crowdsourcing
applications, and allow us to do a thorough analysis to obtain formal bounds on the
number of comparisons necessary to achieve correct results. As such, our results form
the basis for studying more complex models suitable for real-life crowdsourced applica-
tions by providing lower bounds as well as algorithmic ideas. As the next step, several
directions of applied and theoretical research can be pursued.

(1) Experimental validation of our assumptions. We assumed there exists an under-
lying and unknown total order on the values of the elements, and that any two
elements can be correctly ordered by the comparison oracle with probability > 1

2 .
For a human oracle, however, there may be cases where the values of two elements
are almost indistinguishable, for instance, if two photos are taken a few minutes
apart, it is essentially impossible for a human to correctly order them. Further-
more, we assumed that comparisons performed by the oracle in the same batch
are independent, which may not be true for a human oracle. There may also be
a bound on the number of comparisons that a crowd member may be willing to
perform together, no matter how high the reward, such as for lack of available
time, whereas our algorithms for the concave cost functions assume any number of
comparisons can be given to the oracle in a single batch. The actual error, cost, and
latency models for the crowd are hard to formalize and need to be substantiated
with experiments.

(2) Experimental evaluation of our algorithms. The applicability of our solutions for
practical crowdsourcing applications, like clustering a large image set or finding
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top-k best-matched images for a concept, should be evaluated. For the fixed-cost
model, we gave upper and lower bounds on the number of comparisons; however,
one needs to evaluate how they translate to actual costs like money and query
runtime, and how good the final results are for practical purposes. The total number
of comparisons in the fixed-cost model remains independent of the actual set of
workers that answer the questions; however, performance and efficiency may vary
depending on whether a large or small group of crowd workers are employed, and
when the (fixed) per-comparison reward is varied. Similarly, one can evaluate how
different choices of concave cost functions affect the monetary and response-time
costs.

(3) Estimating additional parameters required by the algorithms. For the constant er-
ror model, we assumed constant rate of error 1

2 − ϵ, ϵ > 0 is known. Similarly, in
the variable error model, we assumed the error function f (or a lower bound f ′ on
f that is also strictly growing) is known, as in Algorithm 1. Therefore as a prepro-
cessing step, we need to estimate f for the crowd workers with a small number of
additional comparisons. One simple potential approach that can be evaluated is to
start with a set of elements ordered according to their values, give pairs of elements
at distance % to the workers for different values of % ∈ [0, n− 1], and plot the frac-
tion of incorrect answers received against %. Estimating (constant) error rates for
crowdsourcing and other applications using machine learning approaches has been
studied in the literature [Dawid and Skene 1979; Karger et al. 2011; Li et al. 2013;
Lease 2011; Ipeirotis 2011; Raykar et al. 2010] and may be useful for estimating
the error function f . Similarly, Algorithm 3, when extended to handle the partial
correlation case with arbitrary α, assumes the value of α (or an upper bound on its
value) is known. Although an upper bound of α ≤ n always holds, a better estimate
of α can significantly reduce the number of comparisons. Achieving good estimates
of these additional parameters by experiment may be of independent interest.

(4) Hybrid approaches. Our framework uses only humans to do the comparisons,
whereas in some applications some of the (easier) comparisons can be done compu-
tationally, possibly using machine learning techniques, to reduce the time and cost
incurred while interacting with the crowd (e.g., Marcus et al. [2011b]). Extending
our algorithms to hybrid approaches will be an interesting direction to explore.

There are also several interesting open questions for theoretical research.

(5) Other objective functions. There are several other objective functions that one can
study. One would be to reduce latency, which includes not only the number of
rounds but size of the set of comparisons given to a user in one round; it could take
a single person a long time to answer O(n) comparisons. We may therefore want
to limit the number of comparisons given to a single user in each round. Another
objective function would include a budget (e.g., on the number of comparisons or the
maximum cost that can be incurred with an arbitrary cost function) and minimize
the probability of error.

(6) Concave cost functions. With regard to concave cost functions, one can study:
(i) whether there is a stronger lower bound on OPT for max/top-k in the no-error
and constant error models; (ii) finding optimal max/top-k algorithms for specific
concave cost functions14; and (iii) exploring the clustering problem in the context
of concave cost functions.

14In particular, when g(n) = 2
√

log n, is there an algorithm with cost ≤ c · g(n) for a constant c, or is there a
lower bound of ω(g(n)) where the cost is strictly asymptotically higher than g(n)? We know that an algorithm
with cost ≤ c · g(n) exists for polynomial cost functions g(n) = na, where 0 < a ≤ 1 is a constant, that grow
faster than 2

√
log n (tournament algorithm with binary comparison tree). Also such an algorithm with cost
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APPENDIXES
A. OMITTED PROOFS
In this section we give the proofs omitted in the previous sections.

A.1. Proof of Lemma 4.7
PROOF. The particular choices of the exponential, linear, or logarithmic functions in

the proof ensure that f (1) ≥ 2 + ϵ′ for a small constant ϵ′ > 0; the results also hold for
any other choices of these functions (and functions having steeper growth rates).

Exponential error function. Suppose f (%) = 1 + 2%. From (4) and (5), pℓ ≤ 1
1+2%ℓ

≤
1

2%ℓ
and %ℓ = (h−ℓ+1)δ(n−1)

2h−1 . We set X = 2h = 2δ(n−1)
log(2/δ) . With these choices of X,

∑h
ℓ=1 pℓ

≤
∑h

ℓ=1
1

2%ℓ
≤

∑h
q=1

1

2
qδn
2h

(from (6)) ≤
∑∞

q=1
1

2
qδn
2h

≤
∑∞

q=1
1

(2
δn
2h )q

≤ 2

2
δ(n−1)
2h−1

= 2

2

δ(n−1)
δ(n−1)
log(2/δ)

= 2
2/δ

= δ.

Therefore n
X = n log(2/δ)

2δ(n−1) ≤ n log(2/δ)
δn = log(2/δ).

Linear error function. Suppose f (%) = % + 2. We set X = 2h = δ2n
log log n. With this

choice of X,
∑h

ℓ=1 pℓ ≤
∑h

ℓ=1
1

%ℓ+2 ≤
∑h

ℓ=1
1
%ℓ

≤
∑h

q=1
1

qδn
2h

(from (6)) = 2h

δn
∑h

q=1
1
q ≤ 2h log h

δn

≤ δ2n
log log n × log(log δ2n

log log n )
δn ≤ δ2n

log log n × log log n
δn = δ.

Therefore n
X = n × log log n

δ2n = log log n
δ2 .

Logarithmic error function. Suppose f (%) = log % + 3. We set X = (2δn)
δ

δ+1 . With

this choice of X,
∑h

ℓ=1 pℓ ≤
∑h

ℓ=1
1

log %ℓ
≤ h

log( δn
2h ) (from (7)) = log(δn)

δ
δ+1

log
(

δn

(δn)
δ

δ+1

) ≤
δ

δ+1 log(δn)

log
(

δn

(δn)
δ

δ+1

)

≤
δ

δ+1 log(δn)

log(δn)
1

δ+1
= δ.

With this choice of X, n
X = n

(δn)
δ

δ+1
= n

1
1+δ

δ
δ

δ+1
.

A.2. An Upper Bound of n + O
(

k2

δ

)
for Exact Comparison

(From Section 4.2) Suppose the answers to the value comparisons are exact. Here we
sketch how our techniques presented earlier can find all top-k elements with probability
≥ 1 − δ given δ > 0 using only n + O( k2

δ
) comparisons when k = o(

√
n). As discussed

previously, we choose X = δn
k2 . This ensures that, with probability ≥ 1 − δ, all top-k

elements appear in different X-trees and therefore survive in the upper levels. In each
X-tree, we perform X − 1 comparisons to perform the maximum element in it. Clearly,
all x1, . . . , xk are chosen as maximum elements in their respective X-trees. The upper
level has k2

δ
elements, and we run the linear-time selection algorithm [Blum et al. 1973]

to find xk. A linear pass on the upper level finds x1, . . . , xk that are larger than x1. The
total number of value comparisons performed is ≤ n + O( k2

δ
).

A.3. Proof of Corollary 4.8
Here we show that we obtain the exact top-k elements with probability ≥ 1 − 8δ. To
obtain the bound of 1 − δ, we need to run our algorithm with δ′ = δ/8. We assume
k = o(

√
n) as discussed in Section 4.2, otherwise the algorithm in Feige et al. [1994]

gives a better bound on the number of value comparisons.

≤ c · g(n) exists for the logarithmic cost function g(n) = log n that grows slower than 2
√

log n (all possible
(n
2
)

comparisons in a single round).
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Once again, we start with a random permutation ) and the comparison tree is
again divided into upper and lower levels. In the lower levels, n elements in ) are
partitioned into n

X number of X-trees. Instead of focusing on the single X-tree that
contains the largest element x1, we consider all those X-trees that contain the top-k
elements x1, . . . , xk. We show that, with probability 1 − 6δ: (A) each of x1, . . . , xk appear
in different X-trees so are the maximum elements in their respective X-trees; and (B)
none of these elements loses any comparison in its X-tree.

First we consider (A) and argue that no two elements in x1, . . . , xk appear in the same
X-tree with probability ≥ 1 − δ if X ≤ δn

k2 . Since ) is a random permutation, any of the
other n− 1 elements have equal probability of belonging to any fixed leaf of the X-tree
containing xi, for any i ∈ [1, k]. Therefore, by union bound, the probability that this
X-tree contains another element from x1, . . . , xk is ≤ k(X−1)

n−1 ≤ kX
n , which is ≤ δ

k when
X ≤ δn

k2 . We choose X = δn
k2 . Applying union bound for all xi, i ∈ [1, k], with probability

≥ 1−δ no two top-k elements appear in the same X-tree. From now on, we will consider
that the elements x1, . . . , xk belong to separate X-trees.

Now consider (B). Given (A), each xi, i ∈ [1, k] is the maximum element in its re-
spective X-tree. We apply Algorithm 1 on all n

X X-trees with δ′ = δ/k, hence the total
number of comparisons = ( n

X) × X + o(X) × O( 1
δ′ log 1

δ′ ) = n + o(n) × O( k
δ

log k
δ
). By The-

orem 4.2, all of x1, . . . , xk are decided as the maximum elements in their respective
X-trees with probability ≥ 1 − 6δ/k. By union bound, all of them go to the upper levels
with probability ≥ 1 − 6δ.

In the upper levels, we employ the algorithm given in Feige et al. [1994] to find
the top-k elements that are still x1, . . . , xk. Since these upper levels have n

X elements,
O( n

X log k
δ
) = O( k2

δ
log k

δ
) comparisons suffice to find x1, . . . , xk with probability 1 − δ.

Combined with the number of comparisons in the lower levels and the bad probabil-
ities from (A) and (B), with probability ≥ 1 − 8δ the top-k elements are found with the
stated number of comparisons. For error functions f (%) = #(%) or f (%) = 2%, better
bounds can be obtained by using Lemma 4.7 in the lower levels.

A.4. Tournament and One-Round Algorithm for Different Concave Functions
(From Section 7.1) Consider no comparison errors. Here we discuss two algorithms
for finding max and compare them with an optimal algorithm for different concave
cost function g: (i) the tournament algorithm discussed in Section 4 where, at each
node of the comparison tree, only one comparison is performed, and in the ℓ-th level,
ℓ ∈ [1, log n], 2ℓ−1 comparisons are performed in total; and (ii) the one-round algorithm,
a trivial algorithm for finding max that performs all

(n
2

)
comparisons for all pairs in the

same round and outputs the unique element that wins in all n− 1 comparisons. Recall
the cost of the optimal algorithm OPT ≥ g(n − 1) (see Observation 2).

(1) For any arbitrary concave cost function g, the tournament algorithm incurs a cost
of

∑log n
ℓ=1 g(2ℓ−1) ≤

∑log n
ℓ=1 g(n − 1) = log n · g(n − 1) ≤ log n · OPT, hence gives an

log n-approximation for any arbitrary g.
(2) If g(x) = xa, where 1 ≥ a > 0 is a constant, the tournament algorithm incurs a cost

of
∑log n

ℓ=1 g(2ℓ−1) =
∑log n

ℓ=1 2a(ℓ−1) = 2a(1+log n)−1
2a−1 ≤ c′na.

On the other hand, OPT ≥ (n − 1)a, which gives a constant factor approximation.
(3) If g(x) = 2

√
log x:

(a) the tournament algorithm incurs a cost of
∑log n

ℓ=1 g(2ℓ−1) =
∑log n

ℓ=1 2
√

log 2(ℓ−1) =
∑log n

ℓ=1 2
√

ℓ−1 ≤
∫ log n
ℓ=1 2

√
ℓ−1 = ≤ c′(

√
log n − 1)2

√
log n−1,

whereas OPT ≥ 2
√

log(n−1), which gives an O(
√

log n − 1)-factor approximation;
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(b) if we do all
(n

2

)
comparisons in a single round, the cost is ≤ g(n2) = 2

√
2 log n, and

the ratio to OPT is 2O(
√

log n).
Here the tournament algorithm is better than the one-round algorithm.

(4) If g(x) = log x:
(a) the tournament algorithm incurs a cost of

∑log n
ℓ=1 g(2ℓ−1) =

∑log n
ℓ=1 log 2(ℓ − 1)

=
∑log n

ℓ=1 (ℓ − 1) = log n(log n−1)
2 ,

whereas OPT ≥ log(n − 1), which gives an O(log n)-factor approximation;
(b) but now doing all

(n
2

)
comparisons in a single round has a cost of ≤ g(n2) = 2 log n,

which is a constant factor approximation.
Here the one-round algorithm is better than the tournament algorithm.

(5) If g(x) = a, where a > 0 is a constant:
(a) the tournament algorithm incurs a cost of

∑log n
ℓ=1 g(2ℓ−1) = a log n, whereas OPT =

a, which gives a '(log n)-factor approximation;
(b) here the one-round algorithm is optimal.
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