
1

Exact Model Counting of Query Expressions: Limitations
of Propositional Methods

PAUL BEAME, University of Washington
JERRY LI, MIT
SUDEEPA ROY, Duke University
DAN SUCIU, University of Washington

We prove exponential lower bounds on the running time of the state-of-the-art exact model counting
algorithms—algorithms for exactly computing the number of satisfying assignments, or the satisfying
probability, of Boolean formulas. These algorithms can be seen, either directly or indirectly, as building
Decision-Decomposable Negation Normal Form (decision-DNNF) representations of the input Boolean for-
mulas. Decision-DNNFs are a special case of d-DNNFs where d stands for deterministic. We show that any
knowledge compilation representations from a class (called DLDDs in this article) that contain decision-
DNNFs can be converted into equivalent Free Binary Decision Diagrams (FBDDs), also known as Read-Once
Branching Programs, with only a quasi-polynomial increase in representation size. Leveraging known ex-
ponential lower bounds for FBDDs, we then obtain similar exponential lower bounds for decision-DNNFs,
which imply exponential lower bounds for model-counting algorithms. We also separate the power of decision-
DNNFs from d-DNNFs and a generalization of decision-DNNFs known as AND-FBDDs.

We then prove new lower bounds for FBDDs that yield exponential lower bounds on the running time of
these exact model counters when applied to the problem of query evaluation in tuple-independent proba-
bilistic databases—computing the probability of an answer to a query given independent probabilities of the
individual tuples in a database instance. This approach to the query evaluation problem, in which one first
obtains the lineage for the query and database instance as a Boolean formula and then performs weighted
model counting on the lineage, is known as grounded inference. A second approach, known as lifted infer-
ence or extensional query evaluation, exploits the high-level structure of the query as a first-order formula.
Although it has been widely believed that lifted inference is strictly more powerful than grounded inference
on the lineage alone, no formal separation has previously been shown for query evaluation. In this article,
we show such a formal separation for the first time. In particular, we exhibit a family of database queries for
which polynomial-time extensional query evaluation techniques were previously known but for which query
evaluation via grounded inference using the state-of-the-art exact model counters requires exponential time.

This is an extended and improved version of the papers titled “Lower Bounds for Exact Model Counting and
Applications in Probabilistic Databases,” which appeared in the proceedings of the Conference on Uncer-
tainty in Artificial Intelligence (UAI) 2013 [Beame et al. 2013], and “Model Counting of Query Expressions:
Limitations of Propositional Methods,” which appeared in the proceedings of the International Conference
on Database Theory (ICDT) 2014 [Beame et al. 2014].
This research was partially supported by NSF Awards CCF-1217099, CCF-1524246, IIS-1115188, IIS-
0911036, and IIS-0915054.
Authors’ addresses: P. Beame and D. Suciu, University of Washington, Department of Computer Science
and Engineering, Box 352350 Seattle, WA 98195-2350, USA; J. Li, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, 32 Vassar Street Cambridge MA 02141, USA;
S. Roy, Department of Computer Science, Duke University, Campus Box 90129, 308 Research Dr, Durham,
NC 27708, USA. The bulk of the research was done at the University of Washington.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0362-5915/2017/02-ART1 $15.00
DOI: http://dx.doi.org/10.1145/2984632

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

http://dx.doi.org/10.1145/2984632

1:2 P. Beame et al.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query languages; F.1.3
[Computation by Abstract Devices]: Complexity Measures and Classes—Relations among complex-
ity measures; I.2.4 [Artificial Intelligence]: Knowledge Representation and Methods—Representation
languages

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Model counting, probabilistic databases, knowledge compilation, FBDD,
read-once branching programs, DNNF, lower bounds

ACM Reference Format:
Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. 2017. Exact model counting of query expressions:
Limitations of propositional methods. ACM Trans. Database Syst. 42, 1, Article 1 (February 2017), 46 pages.
DOI: http://dx.doi.org/10.1145/2984632

1. INTRODUCTION

Model counting is the problem of computing the number, #�, of satisfying assignments
of a Boolean formula �. In this article, we are concerned with the weighted version
of model counting, which is the same as the probability computation problem on in-
dependent random variables. Although model counting is #P-hard in general (even
for formulas where satisfiability is easy to check [Valiant 1979]), there have been
major advances in practical algorithms that compute exact, weighted model counts.
Exact model counting for propositional formulas are based on extensions of the Davis-
Putnam-Logemann-Loveland (DPLL) family of algorithms [Davis and Putnam 1960;
Davis et al. 1962] that were originally designed for satisfiability search. We focus on
understanding the limitations of these exact model counting algorithms, both in gen-
eral and, even more importantly, on their limitations in applications of probabilistic
inference.

We are motivated by tuple-independent probabilistic databases [Suciu et al. 2011].
A probabilistic database is a relational database where each tuple t is annotated with
a probability pt ∈ [0, 1]. It defines a probability space over all subsets of the database,
where an outcome, called a possible world, is obtained by randomly and independently
including every tuple t with probability pt. The query evaluation problem in a prob-
abilistic database is the following: For a fixed Boolean query Q, given a probabilistic
database D, compute the probability Pr[Q(D)] that the query is true in a randomly
chosen possible world.

Query evaluation over probabilistic databases is a special case of weighted model
counting. Indeed, one can associate to each query Q and probabilistic database D
a Boolean formula � such that Q’s probability equals that of �. The formula � is
called the lineage of Q on D (reviewed in Definition 2.5). Intuitively, it states which
tuples must be present in a possible world for Q to be true. For example, if Q =
∃x(R(x) ∧ S(x)) and the database instance has two relations R = S = {1, 2, . . . , n}, then
the lineage is (R(1) ∧ S(1)) ∨ (R(2) ∧ S(2)) ∨ · · · (R(n) ∧ S(n)), in essence saying that at
least one pair of tuples R(k), S(k) must be present in the possible world for Q to be
true. Therefore, an obvious way to compute Pr[Q(D)] is to first compute the lineage �
and then perform model counting on �. We call this the grounded inference approach.
In general, grounded inference may be inefficient, in part because � is a polynomially
large propositional formula (measured in data complexity where Q is fixed and D is
variable) that depends on many tuples in the database, while the first-order query Q
is much smaller. As we demonstrate, this is only part of the story.

Several alternative approaches to grounded inference have been proposed, collec-
tively called lifted inference in the statistical relational model literature [Jaeger and
Van den Broeck 2012] and extensional query evaluation in probabilistic databases
[Suciu et al. 2011]. They compute Pr[Q(D)] by exploiting the concise, first-order ex-
pression of Q, and either postpone, or avoid completely, computing the lineage. There is
no consensus on a precise definition of lifted inference. Early definitions asked for the

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

http://dx.doi.org/10.1145/2984632

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:3

entire inference to be performed at the first-order level, without any grounding at all,
and therefore in time that is constant in the size of the domain of the database instance.
This only makes sense when weights are attached to relations, so any two ground
atoms of the same relation contribute the same weight (or probability) to a model,
which represents a very restricted model, called symmetric probabilistic databases
[Jaeger and Van den Broeck 2012; Beame et al. 2015]. We are interested only in asym-
metric databases in this article, and most lifted inference techniques developed in the
literature apply to this general case. Their common characteristic is that they exploit
the high level structure of the first-order formula in order to guide the probabilistic
inference. Van den Broeck [2011] defines domain lifted inference as any inference al-
gorithm that runs in polynomial time in the size of the domain, thus allowing the
algorithm to refer freely to the first-order formula or its grounding. For example, con-
sider the query ∃x∃y(R(x) ∧ S(y)). Grounded inference would first expand it to the
Boolean formula � = ∨

i, j(R(i) ∧ S(j)) and then compute its probability, which is a
challenging task for today’s DPLL-based model counters (see, e.g., Theorem 3.2), while
lifted inference would first rewrite the first-order formula as (∃xR(x)) ∧ (∃yS(y)) and
then compute Pr[Q(D)] as the product of two probabilities, Pr[∃xR(x)] and Pr[∃yS(y)],
both computable in linear time in the size of the database.

Since lifted inference methods can still use grounding when needed, they are, in
theory, at least as powerful as grounded inference. A natural question is whether they
are strictly more powerful. While there have been examples in other contexts where
provable separations have been shown [Sabharwal 2009], no formal separation has
previously been shown in the context of query evaluation. We show such a formal sep-
aration for the first time. We describe a class of Unions of Conjunctive Queries (UCQ)
Q (i.e., first-order formulas restricted to the connectors ∃,∨,∧) whose probability can
be computed in polynomial time, yet where any DPLL-based modern model count-
ing algorithm takes provably exponential time. Thus, grounded inference is strictly
weaker than lifted inference, at least on the class of queries considered here. Note that
our result is a positive statement about lifted inference, and for that reason we shall
avoid defining lifted inference formally in this article. Instead, we will only describe
an algorithm that computes Pr[Q(D)]. Since this algorithm runs in polynomial time,
this algorithm is domain lifted according to Van den Broeck’s formal definition [Van
den Broeck 2011], and it can also be considered “lifted” according to the more informal
criteria in the literature, of performing inference on the first-order expressions. How-
ever, our result is a negative statement about DPLL-based grounded algorithms, and
this requires a careful definition. The cornerstone of our argument is a new simulation
of DPLL-based algorithms to a simple representations of Boolean functions for which
lower bounds have previously been shown for specific functions and for which we prove
new lower bound needed in our context. This allows us to prove that any DPLL-based al-
gorithm takes exponential time on the Boolean formula representing the lineage of any
UCQ query in our class, while a simple lifted inference algorithm computes the same
probability in polynomial time. This proves that current propositional model counting
techniques are strictly weaker than their lifted counterparts on every query in our class.

Lower Bounds on State-of-the-Art Approaches to Exact Model Counting

Modern exact model counting algorithms use a variety of techniques; see Gomes et al.
[2009] for a survey. Many are based on extensions of backtracking search using the
DPLL family of algorithms [Davis and Putnam 1960; Davis et al. 1962] that were
originally designed for satisfiability search. In the context of model counting (and
related problems of exact Bayesian inference), extensions include caching the results of
solved sub-problems [Majercik and Littman 1998], dynamically decomposing residual
formulas into components (Relsat [Bayardo et al. 2000]) and caching their counts

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:4 P. Beame et al.

[Bacchus et al. 2003], and applying dynamic component caching together with conflict-
directed clause learning to further prune the search (Cachet [Sang et al. 2004] and
sharpSAT [Thurley 2006]).

The other major approach, known as knowledge compilation, is to convert the input
formula into a representation of the Boolean function that the formula defines and from
which the model count can be computed efficiently in the size of the representation
[Darwiche 2001a, 2001b; Huang and Darwiche 2007; Muise et al. 2012].

It is known that the trace of a DPLL-based algorithm is a type of knowledge rep-
resentation called a Decision-Decomposable Negation Normal Form (decision-DNNF)
[Huang and Darwiche 2005, 2007], which is a syntactic subclass of d-DNNF repre-
sentations [Darwiche 2001b; Darwiche and Marquis 2002]. This has been noted both
in the work on c2d based on component caching [Huang and Darwiche 2007] and in
that on Dsharp based on sharpSAT [Muise et al. 2012]. While the details of various
DPLL-based algorithms may differ, all the methods for exact model counting surveyed
in Gomes et al. [2009] have a trace that is a decision-DNNF and thus can be converted
to knowledge compilation algorithms that produce decision-DNNF representations,
without any significant increase in their running time.1

In this article, we prove exponential lower bounds on the size of decision-DNNFs
for natural classes of formulas. Therefore our results immediately imply exponential
lower bounds for the running time of all DPLL-based modern exact model counting
algorithms. These bounds are unconditional—they do not depend on any unproved
complexity-theoretic assumptions.

Our bounds apply to very simple classes of Boolean formulas, which occur frequently
both in uncertainty reasoning and in probabilistic inference. We also show that our
lower bounds extend to the evaluation of the properties of a large class of database
queries, which have been studied in the context of probabilistic databases.

We derive our exponential lower bounds by showing how to translate any decision-
DNNF to an equivalent Free Binary Decision Diagrams (FBDD), a less powerful rep-
resentation for Boolean functions.2 Our translation increases the size by at most a
quasipolynomial amount: Every decision-DNNF of size N can be converted into an
FBDD of size at most N2log2 N (Theorem 3.1). We can thus obtain many exponential
lower bounds for exact model counting immediately by using well-established expo-
nential lower bounds for FBDDs. This translation from decision-DNNFs to FBDDs is
of independent interest: It is simple, and efficient, in the sense that it can be com-
puted in time linear in the size of the output FBDD. In fact, it extends to a somewhat
broader class of representations that we define and term Decomposable Logic Decision
Diagrams (DLDDs).

In the database context, it is necessary to handle a broader class of representations
than decision-DNNFs. Our preliminary work [Beame et al. 2013] gave a quasipolyno-
mial translation from decision-DNNFs to FBDDs, but decision-DNNFs only capture
the traces of DPLL-based search algorithms on Conjunctive Normal Form (CNF) ex-
pressions, not the Disjunctive Normal Form (DNF) expressions that arise as lineages
of a database queries. Our generalization of this result to DLDDs captures the traces
of any natural extension of DPLL search to Boolean formulas (in CNF, DNF, or any
other form).

1Recent work has suggested sentential decision diagrams (SDDs) as an alternative format for knowledge
compilation [Darwiche 2011]; the code for SDD-based model counting was made available shortly after this
research was completed [SDD 2014]. This raises the question of whether our main result also extends to
inference algorithms whose trace is an SDD. In subsequent work, Beame and Liew [2015] answered this
affirmatively by showing that SDD representations are exponentially less succinct than decision-DNNF
representations for simple query lineage formulas for which lifted inference is in polynomial time.
2FBDDs are also known as Read-Once Branching Programs (ROBPs or 1BPs).

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:5

It is interesting to note that with formula caching, but without dynamic compo-
nent caching, the trace extensions of DPLL-based searches yield FBDDs rather than
decision-DNNFs [Huang and Darwiche 2005]. Hence, the difference between FB-
DDs and decision-DNNFs is precisely the ability of the latter to take advantage of
decompositions into connected components of subformulas of the formula being rep-
resented. Our conversion shows that these connected component decompositions can
only provide quasipolynomial improvements in efficiency.

Complexity of Compilation. Efficiency for knowledge compilation depends on both
the size of the representation and the time required to construct it. The time required
to construct a decision-DNNF from an input Boolean formula may greatly exceed the
size of the representation. An extreme example is that of an unsatisfiable Boolean
formula: The function evaluates to the constant 0 and hence the decision-DNNF is of
size 1, but checking unsatisfiability may take exponential time. Indeed, DPLL with
caching and conflict-directed clause learning is a special case of resolution theorem
proving [Beame et al. 2004]. There are large numbers of unsatisfiable formulas for
which exponential lower bounds are known for every resolution refutation (see, e.g.,
Ben-Sasson and Wigderson [2001]), and hence this compilation process must be expo-
nential for such formulas.3 The same issues can arise in ruling out parts of the space
of assignments for satisfiable formulas. However, we do not know of any lower bounds
for this excess compilation time that directly apply to the kinds of simple highly sat-
isfiable instances that we discuss in this article. Our lower bound on the runtime of
DPLL-based algorithms exploits only the size of the representation and not the time
to construct it.

Separating Lifted and Grounded Inference for Probabilistic Databases

We use our translation from decision-DNNFs to FBDDs to show a formal separation
between the lifted and grounded inference for queries on probabilistic databases. For
that we need two results.

First, we give a lower bound on the representation for a family of queries, called hk,
k ≥ 1. These queries are interesting because they have been shown to be the simplest
UCQ queries for which the probability computation is #P-hard [Dalvi and Suciu 2012].
Each such query is in FO2, first-order logic restricted to two logical variables: Van
den Broeck et al. [2014] have shown that the probability of any query in FO2 can be
computed in polynomial time on symmetric probabilistic databases, but, in this article,
we study asymmetric databases, and here all queries hk are #P-hard. Each of these
queries has a simple lineage, which is a 2-DNF of size O(n2). We prove unconditional
exponential lower bounds of the form 2�(

√
n) on the sizes of decision-DNNF representa-

tions of these lineages, which is the first non-trivial decision-DNNF lower bound for hk
(Theorem 3.6).

In particular, we prove that any FBDD for the Boolean formula representing the lin-
eage of hk requires at least (2n−1)/n size for a domain of size n. Together, Theorems 3.1
and 3.6 imply our lower bound of 2�(

√
n) on the sizes of decision-DNNF representa-

tions of hk. (We note that a lower bound on the size of the FBDD for h1 was known
previously [Jha and Suciu 2013], but that bound, 2�(log2 n), is insufficient to yield any
decision-DNNF lower bound using our translation.) This lower bound improves on the
bounds on FBDD sizes for the queries hk as well as the separation between lifted and
grounded inference stated in a preliminary version of this work [Beame et al. 2014] in
which proofs were omitted or only sketched.

3DPLL with formula caching, but not clause learning, can be simulated by even simpler regular resolution,
though in general it is not quite as powerful as regular resolution [Beame et al. 2010].

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:6 P. Beame et al.

This implies that any DPLL-based algorithm for computing the probability of the
(lineage of) hk runs in exponential time. This result, however, while new, comes at no
surprise, since all queries hk were known to be #P-hard. For our second result, we
consider the fact that each UCQ hk is the disjunction of k + 1 conjunctive queries,
hk = hk0 ∨ hk1 ∨ . . . ∨ hkk, and prove that any query Q defined as a Boolean combination
F(hk0, . . . , hkk) has the same unconditional lower bounds on its decision-DNNF or FBDD
as hk. For example, F may be the disjunction of these k + 1 queries (in which case Q is
just hk), their conjunction, or any other combination: For any such Q the lower bound
on the size of the FBDD, and hence on the decision-DNNF, continues to hold. The only
restriction on F is that it has to depend on all k + 1 queries; for example, F cannot be
F(hk0, . . . , hkk) = hk0. This is necessary, otherwise the query Q is known to be inversion
free and hence admits an ordered binary decision diagrams (OBDD)4 of size linear
in the size of the active domain [Jha and Suciu 2011]. In that case, a DPLL-based
algorithm could conceivably compute Q’s probability in polynomial time (assuming it
does perfect caching and chooses the variable order optimally).

On the other hand, we describe a simple lifted-inference algorithm that computes the
probability of Q = F(hk0, . . . , hkk) in polynomial time, provided the Boolean function F
satisfies a certain property. The crux of the algorithm is to apply the inclusion/exclusion
formula on the first-order expression Q: While the inclusion/exclusion formula is ex-
ponential in k, the exponent depends only on the query, not on the database, and thus
the algorithm runs in polynomial time in the size of the active domain. This proves a
2�(

√
n) versus nO(1) separation between propositional and lifted methods for queries of

this type (Theorem 3.14).
We briefly discuss the practical implication of our result. In essence, it shows that

there exist three types of UCQ queries: those for which DPLL-based algorithm may run
in polynomial time (e.g., have a polynomial size OBDD); those for which DPLL-based
algorithm provably run in exponential time, yet their probability can be computed in
polynomial time; and those which are provably #P-hard. Specifically, we have proven
that the second category is non-empty, and, moreover, we have described an infinite
family of UCQ queries belonging to the second category. We illustrate such queries in
Example 3.13 and, more concretely, in Example 3.15. Ideally, for practical purposes,
we would like to have a decision procedure that, given a UCQ query Q, classifies Q
into one of these three categories. However, currently only the third class (#P-hard
queries) has been completely characterized in Dalvi and Suciu [2012]; for the first two
categories, we only have sufficient criteria. For example, inversion-free queries have
been proven to have linear-size OBDDs [Jha and Suciu 2011] and thus belong to the
first category, while all UCQ queries in the class described in this article belong to the
second category. A complete characterization of the first two classes remains open.

As we have discussed so far, our lower bounds on the running time of weighted model
counting algorithm apply to decision-DNNF-based model counting algorithms. Their
input is a CNF, and their component rule writes a residual formula as � = �1∧�2 where
�1, �2 are sets of clauses with no common variables. On the other hand, queries in
probabilistic databases have lineage expressions that are DNF formulas, where a more
natural decomposition would be � = �1 ∨ �2, where �1,�2 are formulas with no com-
mon variables. A natural question is whether a simple extension of a model counting
algorithm with this kind of decomposition could significantly improve their power. Our
extension of the simulation of decision-DNNFs by FBDDs to include DLDDs extends
our lower bounds to apply to algorithms that use more general decompositions, with any
unary or binary operators, including independent AND, independent OR, and negation.

4An OBDD is a very simple form of FBDD where every path from the root to a leaf tests the Boolean variables
in the same order.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:7

Fig. 1. A summary of our contributions on lower bounds of model counting algorithms (see Section 3.1).
Here, one representation is contained in another if and only if the first can be (locally) translated into the
second with at most a polynomial increase in size. Dashed borders indicate that regions are not known to be
separated.

Separation of Representations of Boolean Functions

Two other consequences of our simulation of decision-DNNFs by FBDDs are provable
exponential separations between the representational power of decision-DNNFs and
that of either d-DNNFs or AND-FBDDs. There are functions, involving simple tests
on the rows and columns of Boolean matrices, that require exponential size FBDDs
but have linear size representations as AND-FBDDs and d-DNNFs, respectively (cf.
Darwiche [2001b] and Theorems 10.3.8, 10.4.7. in Wegener [2000]; see Beame et al.
[2013] for details); our simulation shows that these lower bounds carry over to decision-
DNNFs, yielding the claimed separations. A comparison of these representations in
terms of their succinctness is given in Figure 1.

Roadmap

We discuss some useful background concepts in Section 2. We describe our main results
in Section 3 and then prove these results in Sections 4, 5, 6, and 7. Finally, we conclude
with directions for related work in Section 8.

2. BACKGROUND

We review some knowledge compilation representations and concepts from probabilistic
databases in this section.

2.1. Knowledge Compilation Representations

Though closely related, FBDDs and decision-DNNFs originate in completely different
approaches for representing (or computing) Boolean functions. FBDDs are special kinds
of Binary Decision Diagrams (BDDs) [Akers 1978], also known as Branching Programs
[Masek 1976]. These represent a function using a directed acyclic graph with decision
nodes, each of which queries a Boolean variable representing an input bit and has
two out-edges, one labeled 0 and the other 1 (see Figure 2(a)). The graph has a single
source node (root node) and has sink nodes labeled by output values of the function.
Given an assignment of the Boolean variables, the value of the function is the label

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:8 P. Beame et al.

Fig. 2. (a) An FBDD representing the Boolean formula (¬X)YZ ∨ XY ∨ XZ. (b) A decision-DNNF representing
the Boolean formula (¬X)YZU ∨ XYZ ∨ XZU.

of the unique sink node reached from the root by following that assignment: at each
node, take the 0-edge if the node’s variable is false, or the 1-edge if the variable is true.
FBDDs, also known as ROBPs, have the property that each input variable is queried
at most once on each source-sink path.5 There are many variants and extensions of
these decision-based representations; for an extensive discussion of their theory, see
the monograph [Wegener 2000]. These include nondeterministic extensions of FBDDs
called OR-FBDDs, as well as their corresponding co-nondeterministic extensions called
AND-FBDDs, which have additional internal AND nodes through which any input can
pass—the output value is 1 for an input iff every consistent source-sink path leads to a
sink labeled 1.

Decision-DNNFs originate in the desire to find restricted forms of Boolean circuits
that have better properties for knowledge representation. Negation Normal Form
(NNF) circuits are those that have unbounded fan-in AND and OR nodes (gates) with
all negations pushed to the input level using De Morgan’s laws. Darwiche [2001a] in-
troduced DNNF, which restricts NNF by requiring that the sub-circuits leading into
each AND gate are defined on disjoint sets of variables. He also introduced d-DNNFs
[Darwiche 2001a; Darwiche and Marquis 2002] that have the further restriction that
DNNFs are deterministic, that is, the sub-circuits leading into each OR gate never si-
multaneously evaluate to 1; d-DNNFs have the advantage of probabilistic polynomial-
time equivalence testing [Huang and Darwiche 2007]. Most subsequent papers have
used these d-DNNFs. An easy way of ensuring determinism is to have a single variable
x that evaluates to 1 on one branch and 0 on the other, so d-DNNFs can be produced
by the subcircuit (x ∧ A) ∨ (¬x ∧ B), which is equivalent to having decision nodes as
above; moreover, the decomposability ensures that x does not appear in either A or B.
The subclass of d-DNNFs in which all OR nodes are of this form is called decision-
DNNFs [Huang and Darwiche 2005, 2007]. Virtually all algorithmic methods that use
d-DNNFs, including those used in exact model counting and Bayesian inference, actu-
ally ensure determinism by using decision-DNNFs. Decision-DNNFs have the further

5The term free contrasts with ordered binary decision diagrams (OBDDs) [Bryant 1986], in which each root-
leaf path must query the variables in the same order. For each variable order, reduced OBDDs are canonical
representations for Boolean functions, making them extremely useful for a vast number of applications.
Unfortunately, OBDDs are often also simply referred to as BDDs, which leads to confusion with the original
general model.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:9

advantage of being syntactically checkable; by comparison, given a general DNNF, it is
NP-hard to check whether it satisfies the semantic restriction of being a d-DNNF.

It is immediate that one can get a completely equivalent representation to the above
definition by using a decision node on x in place of each OR of ANDs involving x and in
place of each leaf variable or its negation; the decomposability property ensures that
no root-leaf path in the circuit queries the same variable more than once. Figure 2(b)
illustrates such a representation of a decision-DNNF. Clearly, these form a special
subclass of the AND-FBDDs discussed above, in which each AND node is required
to have the decomposability property that the different branches below each AND
node query disjoint sets of variables. Though formally there are insignificant syntactic
differences between the definitions, we use the term decision-DNNFs to refer to these
decomposable AND-FBDDs.

Definition 2.1. An FBDD is a rooted directed acyclic graph (DAG) F that computes
m Boolean functions � = (�1, . . . , �m). F has two kinds of nodes: decision nodes, which
are labeled by a Boolean variable X and have two outgoing edges labeled 0 and 1, and
sink nodes, labeled with an element from {0, 1}m. F must satisfy the following read-once
property: Every path from the root to some sink node may test a Boolean variable X at
most once. For every node u in an FBDD F , we denote Fu the sub-DAG of F rooted at
u and denote �u the m Boolean functions defined inductively by the following rules6:

�u = (¬X)�u0 ∨ X�u1 if u is a decision node labeled X, with children u0, u1 (1)
�u = L if u is a sink node labeled L ∈ {0, 1}m.

The FBDD F computes � = �r where r is the root. The size of the FBDD F is the
number nodes in F . Typically, m = 1, but we will also consider FBDDs F with m > 1
and call F a multi-output FBDD.

One can check that the probability of each of the m functions can be computed
in time linear in the size of the FBDD using a simple dynamic program: Pr[�u] =
(1 − p(X)) Pr[�u0] + p(X) Pr[�u1].

The multi-output FBDD definition for m > 1 is standard [Wegener 2000]. When
computing m Boolean functions, it is also typical to consider m separate single-output
FBDDs with overlapping node sets. We will find multi-output FBDDs as defined above
to be natural intermediate objects in our constructions in the proof of Theorem 3.9.

For our purposes, it will also be useful to consider FBDDs with no-op nodes. A no-op
node is not labeled by any variable and has a single child; the meaning is that we do
not test any variable, but simply continue to its unique child. Every FBDD with no-op
nodes can be transformed into an equivalent FBDD without no-op nodes by simply
skipping over any no-op node.

Definition 2.2. An AND-FBDD [Wegener 2000] is an FBDD with an additional kind
of node, called AND-nodes. Similarly to FBDDs, an AND-FBDD must satisfy the read-
once condition. The function �u is defined as follows as in Equation (1) for decision
nodes and sink nodes and is defined as �u = �u1 ∧ · · · ∧ �uu for an AND-node.

Any CNF formula � has an AND-FBDD of size linear in the CNF expression, which
implies that, in general, computing probability of the function defined by an AND-
FBDD in #P-hard. We assume, without loss of generality, that every AND-node in an
AND-FBDD has exactly two children u1, u2, a property that can be enforced by at most
doubling the number of edges in the DAG.

6We write conjunctions φ ∧ ψ as products φψ . If � = (�1, . . . , �m), �′ = (�′
1, . . . , �′

m), and X is a literal, then
X� denotes (X�1, . . . , X�m), while � ∨ �′ denotes (�1 ∨ �′

1, . . . , �m ∨ �′
m).

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:10 P. Beame et al.

Definition 2.3. A decision-DNNF [Huang and Darwiche 2005, 2007] is an AND-
FBDD D satisfying the following property: For every AND-node u with children u1, u2,
the sub-DAGS Du1 and Du2 do not mention any common Boolean variables.

The additional constraint on AND-nodes allows the probability of a decision-DNNF
to be computed in linear time by noting that for every decomposable AND-node u,
Pr[�u] = Pr[�u1] · Pr[�u2].

Finally, we introduce here Decomposable Decision Logic Diagrams or DLDDs by
further generalizing decision-DNNFs.

Definition 2.4. A DLDD is a rooted directed acyclic graph D that has four kinds
of nodes: decision nodes, sink nodes labeled with 0 or 1, and, in addition to these
nodes that they have in common with FBDDs, unary NOT-nodes labeled by ¬ and bi-
nary decomposable operator nodes (OP-nodes), each labeled by some two-input Boolean
function. Similarly to FBDDs, D must satisfy the read-once condition, and, similarly to
decision-DNNFs, for any binary decomposable OP-node u with two children u1, u2, the
sub-DAGS Du1 and Du2 must not mention any common Boolean variables. The func-
tion �u is defined as in Equation (1), where u is a decision node or a sink node; at a
NOT node with child v, �u = ¬�v and if u is an OP-node labeled by function gu, then
�u = gu(�u1,�u2). A DLDD is called positive if it has no NOT nodes and all its binary
OP-nodes are labeled by monotone Boolean functions, ∨ or ∧.

A decision-DNNF is a special case of a positive DLDD where there are no NOT-nodes
and every binary OP-node is an AND-node.

The probability of a DLDD can be computed in linear time, bottom up, by noting that
for each decomposable operator node u with children u1, u2, if we denote p = Pr[�u1]
and q = Pr[�u2], then:

Pr[�u] = g(0, 0) · (1 − p) · (1 − q) + g(0, 1) · (1 − p) · q + g(1, 0) · p · (1 − q) + g(1, 1) · p · q.

Similarly, for a NOT-node u with a unique child u1,

Pr[�u] = (1 − p).

2.2. Queries and Lineages

A UCQ is a first-order formula over a fixed relational vocabulary, consisting of only
positive relational atoms and the connectives ∃,∨,∧. A Boolean UCQ is a UCQ with no
free variables. A probabilistic database D is a relational database where each tuple t is
associated with a probability pt ∈ [0, 1]. The probabilistic database defines a probability
space where the outcomes are all the subsets W ⊆ D, called possible worlds, and where
the probability of an outcome W is

∏
t∈W pt · ∏

t
∈W (1 − pt). The marginal probability of
a query Q is Pr[Q(D)] = ∑

W :W |=Q Pr[W].

Definition 2.5. Fix a finite domain Dom. Associate to each ground tuple t over the
domain Dom a unique Boolean variable Xt. Given a Boolean UCQ Q, the lineage of Q
on Dom, denoted by �Dom

Q , is inductively defined on the structure of Q as follows:

�Dom
Q = Xt if Q is the ground tuple t

�Dom
Q1∧Q2

= �Dom DQ1 ∧ �Dom
Q2

�Dom
Q1∨Q2

= �Dom DQ1 ∨ �Dom
Q2

�Dom
∃x.Q =

∨
a∈Dom

�Dom
Q[a/x].

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:11

Fig. 3. An example of a probabilistic database.

Here Q[a/x] denotes the query obtained by replacing a variable x in query Q by a
constant a; that is, the variable x is grounded to the constant a. Given a relational
database instance D, the lineage of Q on D, denoted by �D

Q, is defined as �D
Q = �Dom

Q ,
where Dom is the active domain of the database D.

The probability of a Boolean formula � over variables Xt is defined as the probability
of � being true when each variable Xt is set to true independently, with probability pt.
It follows that Pr[Q(D)] = Pr[�D

Q].

Example 2.6. Consider a vocabulary with three relation symbols: Patient(name,
diseases), Friend(name1, name2), Smoker(name). Figure 3 shows a tuple-independent
probabilistic database D on these three relations; there are 29 possible worlds. To each
tuple we associate a Boolean variable, and a probability, denoted X1, p1, X2, p2, and so
on. Consider the Boolean query:

Query Qs := ∃x ∃y Patient(x, ‘asthma’) ∧ Friend(x, y).

The query is true on a possible world W iff W contains an asthma patient who has
some friend. Its lineage is as follows:

�
Q
D = X1 Z11 ∨ X1 Z12 ∨ X2 Z22.

This formula is also true precisely in those possible worlds where some asthma pa-
tient has some friend; thus, it should be clear that Pr[Q(D)] = Pr[�Q

D]. The grounded
inference method will first compute the lineage and then compute Pr[�D

s] using the
probabilities of the variables as given in Figure 3 not considering the structure of the
query Qs in the evaluation process.

Lifted inference methods postpone grounding. For example, safe query evaluation
[Suciu et al. 2011] computes Pr[Q(D)] by first grounding only the variable x:

Pr[Q] = Pr[Q[Ann/x] ∨ Q[Bob/x] ∨ Q[Carl/x]]
= 1 − (1 − Pr[Q[Ann/x]])(1 − Pr[Q[Bob/x]])(1 − Pr[Q[Carl/x]]).

Each of the three residual queries occurring above is also computed using lifted infer-
ence. We illustrate only with the first query:

Pr[Q[Ann/x]] = Pr[∃y(Patient(Ann, ‘Asthma’) ∧ Friend(Ann, y))]
= Pr[Patient(Ann, ‘Asthma’) ∧ ∃y(Friend(Ann, y))]
= Pr[Patient(Ann, ‘Asthma’)] · Pr[∃y(Friend(Ann, y))]
=0.2 · Pr[∃y(Friend(Ann, y))].

Finally, the last expression is Pr[∃y(Friend(Ann, y))] = 1 − (1 − 0.3) · (1 − 0.4).

3. MAIN RESULTS

Here we formally state our main results, discuss their implications, and defer the proofs
to the following sections.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:12 P. Beame et al.

3.1. Exponential Lower Bounds on the Size of Knowledge Representations

Our goal is to prove lower bounds on the running time of algorithms that are used in
modern model counters. For that, we use the fact that the trace of any DPLL-based
algorithm with caching and components is a decision-DNNF, and therefore any lower
bound on the size of decision-DNNFs represents a lower bound on the running time of
such algorithms. In this section, we give several such lower bounds on decision-DNNFs.

In fact, for a general statement of our results, we prove lower bounds for the more
general DLDDs instead of decision-DNNFs. The important difference between DLDDs
and decision-DNNFs for model counting is that DLDDs allow negation at arbitrary
levels of the representation. Allowing negation is necessary since decision-DNNFs are
not closed under complement (complementing a decision-DNNF can result in an ex-
ponential size increase), and one should not say that a formula is hard for counting
if its complement is easy to count.7 Handling negation at the output of the represen-
tation turns out to be sufficient to handle it at all levels; small representations that
extend decision-DNNFs by allowing negation anywhere would still yield efficient model
counting and could be substantially more efficient than those that allow negation only
at the output. DLDDs extend decision-DNNFs by including these internal negations
as well as additional binary decompositions other than ∧; we allow these additional
decompositions to state Theorem 3.1, and our lower bounds, in as strong a way as
possible.

Theorem 3.1 allows us to reduce the problem of producing lower bounds for DLDDs
to finding lower bounds for FBDDs.

THEOREM 3.1. Let D be a DLDD with N nodes. Then there exists an equivalent FBDD
F computing the same formula as D, with at most 2N2log2 N nodes and at most N2log2 N

nodes ifD is positive (e.g., whenD is a decision-DNNF). Furthermore, F can be computed
in linear time in its size.

We prove this result in Section 4 where we describe the details of the conversion
algorithm. Recently, Razgon [2016] has identified formulas that have decision-DNNFs
of size O(n2) but require FBDD size (and even nondeterministic FBDD size) �(nlog2 n),
which shows that this conversion is asymptotically optimal.

In the remainder of this sub-section, we give some simple applications of the theorem.
We begin with the following explicit 2-DNF formula introduced by Bollig and Wegener
[1998]. For any set E ⊆ [n] × [n], define �E = ∨

(i, j)∈E XiYj , where X1, . . . , Xn, Y1, . . . , Yn

are Boolean variables. Let n = p2 where p is a prime number; then each number 0 ≤ i <
n can be uniquely written as i = a+ bp, where 0 ≤ a, b < p. Define En = {(i + 1, j + 1) |
i = a + bp, j = c + dp, c ≡ (a + bd) mod p}; thus, |En| = p3 = n3/2. Then:

THEOREM 3.2. [Bollig and Wegener 1998, Theorem 3.1] Any FBDD for �En has 2�(
√

n)

nodes.

The formula �En is not natural. However, we consider the formula H0 =∨
1≤i, j≤n R(i)S(i, j)T (j), which is the lineage of a simple database query on a database

instance (see Section 3.2). It is easy to see that Theorem 3.2 implies that any FBDD
for H0 has size 2�(

√
n), because it can be converted into an FBDD for �En by setting

S(i, j) = 1 or S(i, j) = 0 depending on whether (i, j) is in En.

COROLLARY 3.3. Any decision-DNNF or DLDD for either �En or H0 has 2�(n1/4) nodes.

7This is particularly problematic since model counting algorithms are typically designed for CNF expressions,
but the natural lineages of database query expressions are in DNF form (cf. Section 3.2); the lower bounds
in Beame et al. [2013] did not handle this distinction.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:13

PROOF. Denote N the size of a DLDD for the formula. By Theorem 3.1, we obtain an
FBDD F of size 2log2 N+log N+1, which must be 2�(

√
n); thus log2 N = �(

√
n), hence log N =

�(n1/4), and N = 2�(n1/4).

In particular, any DPLL-based algorithm whose trace can be seen as a DLDD will
take exponential time on the formulas �En and H0. We will later improve the lower
bound on the size of FBDDs for H0 to 2�(n), which implies a 2�(

√
n) lower bound on the

size of its DLDDs.

Separating decision-DNNFs from AND-FBDDs. We show that decision-DNNFs are
strictly weaker than AND-FBDDs. In other words, the extra condition in decision-
DNNFs requiring AND-nodes to be decomposable is significant. Define � ′

En
=∧

(i, j)∈En
(Xi ∨ Yj), the CNF expression that is the dual of �En. Since � ′

En
is a CNF

formula, it admits an AND-FBDD with at most O(n3/2) nodes (since |En| = n3/2). On
the other hand, Theorem 3.2 also implies that any FBDD for � ′

En
has 2�(

√
n) nodes, and

therefore any decision-DNNF for this formula must have 2�(n1/4) nodes by the same
argument as in Corollary 3.3. We have shown:

COROLLARY 3.4. Decision-DNNFs are exponentially less concise than AND-FBDDs.

Separating decision-DNNFs from d-DNNFs. Define �n on the matrix of variables
Xij for i, j ∈ [n] by �n(X) = fn(X) ∨ gn(X) where fn is 1 if and only if the parity of all
the variables is even (meaning:

⊕
i, j Xij = 0) and the matrix has an all-1 row and gn

is 1 if and only if the parity of all the variables is odd (
⊕

i, j Xij = 1) and the matrix
has an all-1 column. Theorem 10.4.7. in Wegener [2000] shows that any FBDD for �n

has 2�(n) nodes (therefore, every decision-DNNF requires 2�(n1/2) nodes). �n can also be
computed by an O(n2) size d-DNNF, because both fn and gn can be computed by O(n2)
size OBDDs, and fn ∧ gn ≡ false. Hence:

COROLLARY 3.5. decision-DNNFs are exponentially less concise than d-DNNFs.

3.2. Lower Bounds for Simple Database Queries and Their Lineages

We now introduce some elementary queries that work as building blocks for the class
of queries considered in these results [Dalvi and Suciu 2012; Jha and Suciu 2013]:

Let [n] denote the set {1, . . . , n}. Fix k > 0 as a parameter for the size of queries
and n > 0 as the size of the domain of tuples in a database. We will use h with
subscripts to denote Boolean first-order formulas (which represent the class of Boolean
UCQ) and H with the same subscripts to denote the lineages of these formulas on
a database with relations R, T , S, S1, . . . , Sk. The potential tuples in these relations
are represented by Boolean variables R(i), T (j), S(i, j), and S�(i, j), respectively, where
i, j ∈ [n] and � ∈ [k].8 Lineages represent propositional formulas that are generated
by grounding a given first-order formula (query) on a database instance and capture

8In a probabilistic database, in general, different relations can have different number of tuples and different
ranges of the values of attributes. However, we assume that the active domain of all attributes ranges from 1
to n without loss of generality, which preserves polynomial-time query evaluation for a given query (in terms
of data complexity). For positive results, that is, polynomial-time algorithms, we can plug in any probability
value for each of these tuples to generate an arbitrary probability instance (for missing tuples, the probability
will be zero). For negative results, this gives a class of database instances for the class of queries for which
the existing model counting algorithms will provably take exponential time. This is unlike other constrained
scenarios like symmetric databases [Jaeger and Van den Broeck 2012; Beame et al. 2015], where all the
tuples in the same relation are required to have the same probability value.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:14 P. Beame et al.

the all possible combinations of input tuples that make the Boolean query true on the
database instance.

Consider the following set of k + 1 Boolean queries hk = (hk0, . . . , hkk), where:

hk0 = ∃x0∃y0 R(x0) ∧ S1(x0, y0)
hk� = ∃x�∃y� S�(x�, y�) ∧ S�+1(x�, y�) ∀� ∈ [k − 1]
hkk = ∃xk∃yk Sk(xk, yk) ∧ T (yk).

Then the corresponding lineages are as follows:

Hk0 =
∨

i, j∈[n]

R(i)S1(i, j), Hkk =
∨

i, j∈[n]

Sk(i, j)T (j),

Hk� =
∨

i, j∈[n]

S�(i, j)S�+1(i, j) ∀� ∈ [k − 1].

We define Hk = (Hk0, . . . , Hkk). Two well-studied queries [Dalvi and Suciu 2012] that
we will consider in this section are given below:

Query hk, for k ≥ 1: hk is a disjunction on the queries in hk: hk = hk0 ∨ hk1 ∨ · · · ∨ hkk.
The lineage Hk of hk is given by Hk = Hk0 ∨ Hk1 ∨ · · · ∨ Hkk.

Query h0: h0 uses a single relation symbol S in addition to R and T : h0 = ∃x∃y R(x)∧
S(x, y) ∧ T (y). The lineage H0 of h0 is given by H0 = ∨

i, j∈[n] R(i)S(i, j)T (j).

Lower Bounds on FBDDs for Queries h0, hk. Jha and Suciu [2013] previously showed
that every FBDD for the lineage H1 of h1 has size 2�(log2 n), but this is insufficient
to derive any lower bound using our simulation. Our first result improves this to an
exponential lower bound, not just for H1 but also for H0 and for all Hk for k > 1:

THEOREM 3.6. For every n > 0, any FBDD for H0 or for Hk for k ≥ 1 has ≥ (2n − 1)/n
nodes.

It is known that weighted model counting for both H0 and Hk is #P-hard [Dalvi and
Suciu 2012]. However, the lower bounds we show on these FBDD sizes are absolute (in-
dependent of any complexity theoretic assumption) and do not rely on the #P-hardness
of the associated weighted model counting problems. We give the proof in Section 5.
This improved bound is critical for proving the overall lower-bound result in this article
(Theorem 3.10).

While we do not need h0 and H0 in the rest of the article, we include it in Theorem 3.6
because it is obtained in a fashion similar to that for Hk and substantially improves on
the 2�(

√
n) lower bound for H0 derived from Theorem 3.2. Our new lower bound improves

this to the nearly optimal (2n − 1)/n.
We also note that our stronger lower bounds for H1 give instances of bipartite 2-DNF

formulas that are simpler to describe than those of Bollig and Wegener [1998], but
yield as good a lower bound on FBDD sizes in terms of the number of variables and
even better bounds as a function of the number of terms: p in �En is analogous to n in
H1 formulas and �En has p3 terms, versus only 2n2 for H1.

Lower Bounds for FBDDs for Queries Over hk. Theorem 3.6 gives a lower bound on
hk, which is simply the logical OR of the queries in hk. Theorem 3.9 below generalizes
this result by allowing queries that are arbitrary functions of queries in hk.

Let f (X) = f (X0, X1, . . . , Xk) be an arbitrary Boolean function on k + 1 Boolean
variables X = (X0, . . . , Xk) and Q the Boolean query Q = f (hk0, hk1, . . . , hkk). Clearly,
the lineage of Q is f (Hk) = f (Hk0, Hk1, . . . , Hkk).

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:15

Example 3.7. If f (X0, X1, . . . , Xk) = ∨k
�=0 X�, then we get query hk = ∨k

�=0 hk�; its
lineage is Hk = ∨k

�=0 Hk�.

Any function f has an equivalent form that includes all k+ 1 variables, for example,
by adding redundant variables f (X) ∧ [

∨k
�=0 X� ∨ ¬X�]. To disallow such redundancy,

we require that the function depends on all k + 1 variables defined as follows:

Definition 3.8. The function f depends on a variable X�, � ∈ {0, . . . , k}, if there is an
assignment μ−� on the rest of the variables X \ {X�} such that f [X�, μ−�] = X� or ¬X�.

THEOREM 3.9. If f depends on all k+1 variables X0, . . . , Xk, then any FBDD F with N
nodes for the lineage of Q = f (hk0, . . . , hkk) can be converted into a multi-output FBDD
F ′ for (Hk0, . . . , Hkk) with O(k2kn3N) nodes. It follows that N = 2�(n).

To see that N = 2�(n), note that the multi-output FBDD F ′ can be immediately
converted into an FBDD computing Hk with the same number of nodes, and, therefore,
if k ≤ αn for some constant α < 1, then F has at least 2�(n) nodes by Theorem 3.6.

We prove the theorem in Section 6. The condition that f depends on all variables is
necessary.

If Q does not depend on any one of the queries in hk, then the theorem fails. For
example, if Q ≡ hk0, then Q admits an OBDD of size O(n), while any multi-output
FBDD for (Hk0, . . . , Hkk) has size ≥ (2n −1)/n by Theorem 3.6. More generally, if Q does
not depend on some query hki, then its lineage has a very simple and easy to construct
FBDD of size linear in n [Jha and Suciu 2011], which uses row-major order for one side
of the cut and column-major order for the other side; it can then be used to count Q in
polynomial time (see Section 6).

Theorem 3.9 extends prior work in several ways. First, it is the first result showing
exponential lower bounds on FBDDs for a large class of queries. Prior to Theorem 3.9,
the only known lower bound was the quasipolynomial lower bound for h1 [Jha and Suciu
2013]. Second, although a conversion of an FBDD for a specific query QW (described
later in this section) into one for h1 was given in Jha and Suciu [2013], this conversion
did not extend to other queries. While we were inspired by that proof, the techniques
we use in Theorem 3.9 are considerably more powerful and use new ideas that can be
of independent interest to show lower bounds on the size of FBDDs in general.

Lower Bounds for Model Counting Algorithms for Queries Over hk. Theorems 3.1,
3.6, and 3.9 together prove the following lower bound result:

THEOREM 3.10. If Q is a Boolean combination of the queries in hk that depends on all
k + 1 queries in hk, then any DLDD (and therefore any decision-DNNF) for the lineage

 of Q has size 2�(

√
n).

PROOF. Let N be the size of a DLDD for Q. By Theorem 3.1, Q has an FBDD of size
N2log2 N. By Theorem 3.9, N2log2 N = 2�(n), implying that N is 2�(

√
n).

As we discussed previously, since current propositional exact weighted model count-
ing algorithms (extended with negation to handle DNFs) without loss of generality
yield DLDDs of size at most their running time, we immediately obtain:

COROLLARY 3.11. All current propositional exact model counting algorithms require
running time 2�(

√
n) to perform weighted model counting for any query Q that is a

Boolean combination of the queries in hk and depends on all k + 1 queries in hk.

A Dichotomy Theorem for a Class of Queries. We extend the lower bound in Theo-
rem 3.9 by proving a dichotomy theorem for a slightly more general class of queries:

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:16 P. Beame et al.

Any query in this class either has a polynomial-time model counting algorithm or all
existing DPLL-based model counting algorithms require exponential time. To define
the class of queries, we consider the k+1 queries in hk and the following additional k+2
queries bk: b0 = ∃u0 R(u0), b� = ∃u�∃v�S�(u�, v�), ∀� ∈ [k], bk+1 = ∃vk+1T (vk+1). These
queries have the following lineages on the same domain of size n: B0 = ∨

i∈[n] R(i),
B� = ∨

i, j∈[n] S�(i, j), ∀� ∈ [k], and Bk+1 = ∨
j∈[n] T (j), respectively.

Let g(X0, . . . , Xk, Y0, . . . , Yk+1) be a Boolean function on 2k + 3 variables. Consider
the query Q = g(hk0, . . . , hkk, b0, . . . , bk+1) = g(hk, bk), and its lineage g(Hk, Bk). Let
g(X, 1) = g(X0, . . . , Xk, 1, . . . , 1). Then the following dichotomy holds where n is the size
of the domain:

THEOREM 3.12.

(1) If g(X, 1) depends on all k + 1 variables X0, . . . , Xk, then any DLDD for the lineage
of Q has size 2�(n).

(2) Otherwise, there exists an FBDD for the lineage of Q of size nO(1), and the FBDD can
be constructed in nO(1) time.

We prove Theorem 3.12 in Section 7.

3.3. Separating Propositional and Lifted Model Counting

Theorem 3.10, when applied to query hk, k ≥ 1, is not surprising: #P-hardness of hk
makes it unlikely to have an efficient model counting algorithm. However, there are
many other query combinations over hk where weighted model counting can be done
in polynomial time using lifted inference methods. This separates the grounded from
the lifted inference algorithms.

Consider the case when Q = f (hk) and f is a monotone Boolean formula
f (X0, . . . , Xk), and thus Q is a UCQ query. Here the cases when weighted model count-
ing for Q can be done in polynomial time are entirely determined by the structure of
the query expression9 f , and we review it here briefly following Suciu et al. [2011].

To check if weighted model counting for Q = f (hk) is computable in polynomial
time, write f as a CNF formula, f = ∧

i Ci, where each (positive) clause Ci is a set of
propositional variables Ci ⊆ {X0, . . . , Xk}. Define the lattice (L,≤), where L contains all
subsets u ⊆ X that are a union of clauses Ci, and the order relation is given by u ≤ v

if u ⊇ v. The maximal element of the lattice is ∅, (we denote it 1̂), while the minimal
element is X (we denote it 0̂). The Möbius function on the lattice L, μ : L × L → R,
is defined as μ(u, u) = 1 and μ(u, v) = −∑

u<w≤v μ(w, v) [Stanley 1997]. The following
holds [Suciu et al. 2011]: If μ(0̂, 1̂) = 0, then weighted model counting for Q can be
done in time polynomial in n (using in the inclusion/exclusion formula on the CNF); if
μ(0̂, 1̂)
= 0, then the weighted model counting problem for Q is #P-hard.

Example 3.13. Here we give examples of easy and hard queries. A more practical
example is given in Example 3.15.

—For a trivial example, hk = hk0 ∨ · · ·∨ hkk has a single clause, and hence its lattice has
exactly two elements 0̂ and 1̂, and μ(0̂, 1̂) = −1, hence hk is #P-hard.

—Two more interesting examples for k = 3:

fW = (X0 ∨ X2) ∧ (X0 ∨ X3) ∧ (X1 ∨ X3)
f9 = (X0 ∨ X3) ∧ (X1 ∨ X3) ∧ (X2 ∨ X3) ∧ (X0 ∧ X1 ∧ X2).

9The propositional formula f describes the query expression Q and should not be confused with the propo-
sitional grounding of Q on the instance R(i), S1(i, j),. . . , Sk(i, j), T (j); � ∈ [1, k − 1], i, j ∈ [n].

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:17

Fig. 4. The lattices for (a) fW , (b) f9.

Their lattices, shown in Figure 4, satisfy μ(0̂, 1̂) = 0 (in the figure, μ at each node
u denotes μ(u, 1̂)). Therefore, for the queries QW = fW (h30, h31, h32, h33) and Q9 =
f9(h30, h31, h32, h33), weighted model counting can be done in polynomial time. For
example, to compute the probability of QW , we apply the inclusion/exclusion formula
on the query expression and get

Pr[QW] = Pr[h30∨h32] + Pr[h30∨h33] + Pr[h31∨h33]

− Pr[h30∨h32∨h33] − Pr[h30∨h31∨h33]

− Pr[h30∨h31∨h32∨h33] + Pr[h30∨h31∨h32∨h33]

While computing Pr[h30 ∨ h31 ∨ h32 ∨ h33] is #P-hard (because this query is h3),
the two occurrences of this term cancel out, and for all remaining terms one can
compute the probability in polynomial time in n (since each misses at least one term
h30, h31, h32, h33). Thus, weighted model counting can be done in polynomial time for
QW (similarly for Q9) at the query expression level.

On the other hand, Theorem 3.10 proves that, if we ground QW or Q9 first, then any
DPLL-based model counting algorithm will take exponential time on the lineage. This
leads to the main separation result of this article:

THEOREM 3.14. Let Q = f (hk) be any monotone, Boolean combination of the queries
in hk that depends on all k+1 queries in hk such that μ(0̂, 1̂) = 0. Then weighted model
counting for Q can be done in time polynomial in n, whereas all existing DPLL-based
propositional algorithms for model counting require exponential time on the lineage.

PROOF. From Theorem 3.10, since Q is a Boolean combination of the queries in hk
that depends on all k + 1 queries in hk, then any DLDD (and therefore any decision-
DNNF) for the lineage
 of Q has size 2�(

√
n). This gives the same lower bound on the

running time of all existing DPLL-based propositional algorithms (which produce a
decision-DNNF as a trace) since the running time must be at least as large as the size
of the trace. On the other hand, by Theorem 4.21 of Dalvi and Suciu [2012], since Q is
monotone and satisfies μ(0̂, 1̂) = 0, it has a polynomial-time lifted inference algorithm
for query evaluation.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:18 P. Beame et al.

Example 3.15. In the spirit of Example 2.6, consider the following extended vocab-
ulary of a knowledge base:

Blogger(name)

Friend(name1, name2)

Manager(name1, name2)

Family(name1, name2)

Tweeter(name)

Consider the following partial constraints:

C0 = ∀x∀y Friend(x, y) ⇒ Blogger(x) “Friends are bloggers”
C1 = ∀x∀y ¬Friend(x,y) ∨ ¬Manager(x, y) “Managers are not friends”
C2 = ∀x∀y ¬Manager(x,y) ∨ ¬Family(x, y) “Managers are not family”
C3 = ∀x∀y Family(x, y) ⇒ Tweeter(y) “Family members are tweeters”

Such constraints arrive, for example, by converting Markov Logic Networks [Domingos
and Lowd 2009] to tuple-independent probabilistic databases, see, for example, Gribkoff
and Suciu [2016]. Consider the following complex constraint:

C = (C0 ∧ C2) ∨ (C0 ∧ C3) ∨ (C1 ∧ C3).

It says that: “either all friends are bloggers and managers are not family members, or
all friends are bloggers and all family members are tweeters, or all managers are not
friends and family members are tweeters.” It is straightforward to extend the definition
of lineage (Definition 2.5) to universal quantifiers, negations, and implications, in order
to compute the lineage of the constraint C. Then we can run a DPLL-based algorithm
to compute the probability Pr[C]. Theorem 3.14 can be used to show that such an
algorithm takes exponential time, while Pr[C] can be computed in polynomial time
in the size of the probabilistic database. To see this, it suffices to define the following
relations:

R(x) = ¬Blogger(x)
S1(x, y) = Friend(x, y)
S2(x, y) = Manager(x, y)
S3(x, y) = Family(x, y)

T (y) = ¬Tweeter(y).

Negation is defined over the active domain of the database, that is, R(x) is true on all
constants x where Blogger(x) is false. Then the negation ¬C is precisely the query QW
in Example 3.13, because ¬C0 = ∃x∃y R(x) ∧ S1(x, y) = h03, ¬C1 = ∃x∃y S1(x, y) ∧
S2(x, y) = h13, and so on.

4. LOWER BOUNDS FOR KNOWLEDGE REPRESENTATIONS

In this section, we prove Theorem 3.1 by describing a construction to convert a DLDD
D to an FBDD F . Recall that for a node u in D or F , the sub-DAGs rooted at u are
denoted by Du and Fu, respectively.

4.1. Main Ideas

To constructF we must remove all OP-nodes inD and replace them with decision nodes.
Assume that D has a single OP-node, which is an AND-node u with two children, v1, v2.
We need to replace this node with an FBDD for the expression �v1 ∧ �v2 . Both Dv1 and
Dv2 are already FBDDs, and then we can remove the AND-node easily as illustrated

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:19

Fig. 5. (a) Basic construction for converting a decision-DNNF into an FBDD (b) where it fails.

in Figure 5(a): Stack Dv1 over Dv2 , and redirect all 1-sink nodes in Dv1 to the root of
Dv2 . Clearly, this computes the same AND function; moreover, it satisfies the read-once
condition required for FBDD, because Dv1 ,Dv2 do not have any common variable. This
idea can be extended to the case when the OP-node is an OR-node by redirecting all
0-sink nodes from Dv1 to the root of Dv2 . If this construction worked in general, then
any DLDD could be converted into an FBDD of at most twice the size.

But, in general, this simple idea fails, as can be seen on the simple decision-DNNF
in Figure 5(b) (it computes (¬X)Y Z ∨ XYU). To compute the first AND node, we need
to stack Dv1 over Dv2 and to compute the second AND node we need to stack Dv1 over
Dv3 : This creates a conflict for redirecting the 1-sink node in Dv1 to v2 or to v3.10 To
get around that, we use two ideas. The first idea is to make copies of some subgraphs.
For example, if we make two copies of Dv1 , we call them Dv1 and D′

v1
, and then we

can compute the first AND-node by stacking Dv1 over Dv2 and compute the second
AND-node by stacking D′

v1
over Dv3 , and the conflict is resolved. The second idea is to

reorder the children of the AND-nodes to limit the exponential blowup due to copying.
We present the details next.

4.2. The Construction of F
We will convert D into an FBDD F augmented with NOT-nodes and NO-OP nodes
(unlabeled nodes having only one outgoing edge). We call such an object FBDD¬. First,
we state a simple observation:

PROPOSITION 4.1. Any FBDD¬ can be converted into an equivalent FBDD by at most
doubling the number of nodes (and the conversion can be computed in linear time in the
size of the FBDD¬).

PROOF. The idea is to use double-rail logic. Fix a FBDD¬ F . Make another copy of
F , say, F ′, which is exactly the same as F except the 0/1 labels of all sink nodes are
flipped. Therefore, not only does F ′ compute the negation of the function computed by
F , but also every node u′ in F ′ computes the negation of the function computed by the
corresponding node u in F and vice versa. We make a combined FBDD from the union
of F and F ′ as follows: For every NOT-node u in F with unique child v in F and the
corresponding NOT-node u′ and child v′ in F ′, reconnect u to v′ and u′ to v and change
both u and u′ to NO-OP nodes. The root will be the root of F . Finally, for each NO-OP
node u, replace u by its unique child v until all NO-OP nodes have been removed. (Any
node not reachable from the root can also be removed.)

For each node u of a DLDD D, let Mu be the number of binary OP-nodes in the
subgraph Du. If u is an OP-node, then we have Mu = 1 + Mv1 + Mv2 , because, by

10In this particular example, one could stack Dv2 and Dv3 over Dv1 and avoid the conflict, but, in general,
Dv2 ,Dv3 may have conflicts with other subgraphs.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:20 P. Beame et al.

definition, the two DAGs Dv1 and Dv2 are disjoint; we will always assume that Mv1 ≤
Mv2 (otherwise we swap the two children of the OP-node u), and this implies that
Mu ≥ 2Mv1 + 1. We classify the edges of the DLDD into three categories: (u, v) is a light
edge if u is an OP-node and v its first child, (u, v) is a heavy edge if u is an OP-node and
v is its second child, and (u, v) is a neutral edge if u is a decision node or NOT-node. We
always have Mu ≥ Mv, while for a light edge we have Mu ≥ 2Mv + 1.

THEOREM 4.2. For any DLDD D with at most N nodes, M binary OP-nodes, if there
are at most L light edges on any path in D from the root to a sink, then there exists
an equivalent FBDD¬ F computing the same function as D, with at most NML nodes.
Furthermore, if D is positive, then F is an FBDD. Moreover, F can be constructed in
time linear in its size.

Theorem 3.1 immediately follows from Proposition 4.1 and Theorem 4.2 and the fact
that M + 1 ≤ N and L ≤ log2 M ≤ log2 N. Indeed, consider any path in D with L light
edges, (u1, v1), (u2, v2), . . . , (uL, vL). We have Mui ≥ 2Mvi + 1 and Mvi ≥ Mui+1 for all i,
and we also have M ≥ Mu1 and MvL ≥ 0, which implies M ≥ 2L − 1 (by induction on L).
Therefore, 2L ≤ M + 1 ≤ N (because D has at least one node that is not an OP-node),
and NML = N2L log M ≤ N2log2 N, proving the claim.

In the rest of this section, we prove Theorem 4.2. Fix the DLDD D. Let u denote a
node in D and P denote a path from the root to u. Let s(P) be the set of light edges
on the path P, and let S(u) consist of the sets s(P) for all paths from the root to u,
formally:

s(P) = {(v,w) | (v,w) is a light edge in P}
S(u) = {s(P) | P is a path from the root to u}.

We view the set of light edges s = s(P) as a sequence of edges ordered by their occur-
rences in P (from the root to u). This order is independent of P: If s = s(P) = s(P ′)
where P, P ′ are two paths from the root to the node u, then any light edges that occur
in both P and P ′ must occur in the same order, since D is acyclic.

We will assume, without loss of generality, that D has exactly two sink nodes, namely
0 and 1. We define F formally. Its nodes are pairs (u, s) where u is a node in D, s ∈ S(u).
The root node is (root(D),∅). We define the edges and node labels of F as follows: The
edges in F and are of three types:
Type 1: For each light edge e = (u, v) in D, and every s ∈ S(u), add the edge ((u, s), (v, s ∪
{e})) to F . Label the node (u, s) as a NO-OP node.
Type 2: For every neutral edge (u, v) in D, and every s ∈ S(u), add the edge ((u, s), (v, s))
to F . Label the node (u, s) as u was labeled in D; that is, (u, s) is precisely the same kind
of node that u was in D.
Type 3: For each of the two sink nodes b ∈ {0, 1} in D, and every non-empty s ∈ S(b),
add one edge of type 3 from (b, s) as follows. Let e = (u, v1) be the last edge in the set
s and gu be the operator of the OP-node u. Let v2 be the heavy child of u. Then the
function gu(b, Y) is Y , ¬Y , or a constant b′, and we construct the edge accordingly, in
each case as follows:

(1) If gu(b, Y) = Y , then add the edge ((b, s), (v2, s − {e})) and label (b, s) a NO-OP node.
(2) If gu(b, Y) = ¬Y , then add the edge ((b, s), (v2, s − {e})) and label (b, s) a NOT-node.
(3) If gu(b, Y) = b′ ∈ {0, 1}, then add the edge ((b, s), (b′, s−{e})) and label (b, s) a NO-OP

node.

Finally, for each b ∈ {0, 1}, (b,∅) is the unique sink node with label b. Note that if D is
positive, then there are no NOT-nodes in D and gu(b, Y)
= ¬Y for all b and all nodes u,
so F does not have any NOT-nodes.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:21

Fig. 6. Illustration of conversion of DLDD to FBDD¬: (a) A decomposable OP-node with smaller and larger
subgraphs and (b) new connection to larger subgraph with NO-OP or NOT node (see text).

It is easy to see that F is a well-defined fully labeled directed graph with decision,
NO-OP, and NOT-nodes and two sinks, since every OP-node in D has a light out-edge
and every other non-sink node has a neutral out-edge. Also, the out-degrees of these
nodes match the requirements for their labels. It remains to show that F is acyclic and
satisfies the read-once property, is equivalent to F , and has at most NML nodes.

The intuition behind the sets/sequences s associated with each node of F is that
they allow us to keep track of what can be seen as an iterative copying process in
the conversion from the DLDD to the FBDD¬. Each additional light edge in s can be
used to make a fresh copy of the descendants of the left child v1 of an OP-node u. To
illustrate this, suppose that D has a single OP-node u with two children v1, v2, and let
e = (u, v1) be the light edge. Suppose that there are other neutral edges into Dv1 . Then
F contains two copies of the subgraph Dv1 , one with nodes labeled (w, {e}), and the
other with nodes labeled (w,∅). Any 1-sink node in the first copy becomes a NO-OP or
NOT-node in F and is connected to v2 (similarly to Figure 5(a)). The OP-node becomes
a NO-OP node with out-degree one. The sink nodes and neutral edges to the second
copy remain as before. This copying process is repeated in Dv1 . The first step for this
process is illustrated in Figure 6.

4.3. Proof of Theorem 4.2

Theorem 4.2 follows from the following three lemmas:

LEMMA 4.3. F has at most NML nodes.

PROOF. Recall that all nodes in F are of the form (u, s). There are N possible choices
for the node u, and at most ML possible choices for the set s, because |s| ≤ L (since
every path has ≤ L light edges), and M is the number of light edges.

LEMMA 4.4. F is a correct FBDD¬.

LEMMA 4.5. F computes the same function as D.

PROOF OF LEMMA 4.4. As we have already noted, the node labels and edges of F are
locally consistent with it being an FBDD¬. It remains to prove that F is a DAG and
it satisfies the read-once condition of being an FBDD¬. Since NO-OP and NOT nodes
have out-degree 1, these properties follow immediately from the following claim:

CLAIM. If u is a decision node in D labeled with a variable X, and there exists a
non-empty path (with at least one edge) between the nodes (u, s) and (v, s′) in F , then
the variable X does not occur in Dv.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:22 P. Beame et al.

Indeed, the claim implies that F is acyclic, because any cycle in F implies a non-
empty path from some node (u, s) to itself, and, obviously, X ∈ Du, contradicting the
claim. It also implies that every path in F is read-once: If a path tests a variable X
twice, once at (u, s) and once at (u1, s1), then X ∈ Du1 , contradicting the claim. It remains
to prove the claim.

Suppose, to the contrary, that there exists a node (u, s) such that u is labeled with
X and there exists a path from (u, s) to (v, s′) in F such that X occurs in Dv. Choose
v such that Dv is maximal; in other words, there is no path from (u, s) to some (v′, s′′)
such that Dv ⊂ Dv′ (in the latter case replace v with v′: we still have that X occurs in
Dv′). Consider the last edge on the path from (u, s) to (v, s′) in F :

(u, s), . . . , (w, s′′), (v, s′). (2)

Observe that (w, v) is not an edge in D since Dv is maximal and since (u, v) is not an edge
in D by the read-once property of D; therefore, the edge from (w, s′′) to (v, s′) is of Type 3.
It cannot be of type 3.c, because, in that case, v is a sink node and thus X
∈ Dv. Thus,
it is of type 3.a or 3.b, and, hence, there exists an OP-node z with children v1, v, and
our last edge is of the form (w, s′ ∪ {e}), (v, s′), where e = (z, v1) the light edge from z. We
claim that e
∈ s; that is, it is not present at the beginning of the path in Equation (2).
Otherwise, if e ∈ s, then there exists a path from v1 to u (recall that s consists of light
edges on some path from the root to u), which means that the variable X occurs both
in Dv1 (because it is the label of the node u) and in Dv (by assumption, X occurs in Dv),
but this contradicts the fact that z is a decomposable binary operation (Definition 2.4),
meaning that its two children do not share any common variables. This proves e
∈ s.
On the other hand, e ∈ s′′. Now consider the first node on the path in Equation (2)
where e is introduced. It can only be an edge of the form (z, s1), (v1, s1 ∪ {e}). But now
we have a path from (u, s) to (z, s1) with X ∈ Dz ⊃ Dv, contradicting the maximality of
v. This proves the claim.

PROOF OF LEMMA 4.5. Denote by F(D) the function whose input is a DLDD D and that
returns the FBDD¬ F described above. Recall that for every node u ∈ D, �u denotes
the function computed by the sub-DAG of D rooted at u. Similarly, for a node u′ = (u, s)
in F , let �u′ denote the function computed by the sub-DAG of F rooted at u′. To prove
Lemma 4.5, we need to show that �r = �(r,∅), where r is the root node in D. For that
we will establish a stronger relationship between the functions computed at the nodes
in D and in F by proving inductive properties of our formal construction.

We start by observing a simple property of the functions computed in F :

PROPOSITION 4.6. Let D be any DLDD and F = F(D). (1) If u is a decision node in D
testing the variable X, and with children v0, v1, then the function computed by F at the
node (u, s) is as follows:

�(u,s) =(¬X)�(v0,s) ∨ X�(v1,s).

Similarly, if u is a NOT-node with child v, then �(u,s) = ¬�(v,s). (2) Let b ∈ {0, 1} be a
sink node in D such that u′ = (b, s) is not a sink node in F ; then u′ has unique child
v′, where (u′, v′) is an edge of Type 3. Let e = (u, v1) be the last edge in s, and let gu the
binary operator labeling u. Then, the function computed by F at u′ is as follows:

�u′ = gu(b, �v′).

PROOF. Equation (1) follows immediately from the construction of F , because these
node types do not change when we move from D to F . We prove Equation (2) by
examining the same cases as in the Type 3 edges and labels:

(1) If gu(b, Y) = Y , then the node u′ is a NO-OP, hence �u′ = �v′ = g(b, �v′).
(2) If gu(b, Y) = ¬Y , then the node u′ is a NOT-node and �u′ = ¬�v′ = g(b, �v′)

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:23

(3) If gu(b, Y) = b′ ∈ {0, 1}, then u′ is again a NO-OP and we reuse the argument
in (a).

To prove Lemma 4.5, we will apply Proposition 4.6 and the definition of the mapping
F to prove the following claim.

CLAIM. For each node u in D, if we write Fu = F(Du) and let �u denote the function
mapping each node of Fu to the Boolean function it computes, then

�u
(u,∅) =�u. (3)

Lemma 4.5 follows immediately by applying the claim to the root node r of D. We
need to use the different functions �u because, in general, F(Du) is not a subset of F(D)
(which is F(Dr)) since the sets of light edges s associated with nodes in F(D) will be
longer than those in F(Du). We prove Equation(3) by induction on the size of Du and
consider four cases, depending on the type of u:

Sink node. If u ∈ {0, 1} is a sink node in D, then, by construction, Fu = F(Du)
consists of a single sink node (u,∅). Both �u

(u,∅) and �u are the constant u ∈ {0, 1},
proving the claim.
Decision node. Let X be the variable labeling u and v0, v1 its two children. By the
definition of Fu = F(Du), the node (u,∅) is labeled X and has two children (v0,∅)
and (v1,∅). Here, the FBDD Fu

(v0,∅) is the same as Fv0 = F(Dv0), and, similarly, Fu
(v1,∅)

is the same as Fv1 = F(Dv1), so we can apply the induction hypothesis to obtain
�u

(v0,∅) = �
v0
(v0,∅) = �v0 and �u

(v1,∅) = �
v1
(v0,∅) = �v1 . Applying Proposition 4.6 (1) to Du,

we obtain �u
(u,∅) = (¬X)�u

(v0,∅) ∨ X�u
(v1,∅), which is equal to (¬X)�v0 ∨ X�v1 = �u,

proving the claim.
NOT-node. If u is a NOT-node of D with child v, then again Fu

(v,∅) is the same as
Fv = F(Dv) and so, by induction, �u

(v,∅) = �v
(v,∅) = �v. Applying Proposition 4.6 (1)

to Du, we obtain �u
(u,∅) = ¬�u

(v,∅) = ¬�v = �u.
OP-node. Let gu : {0, 1} × {0, 1} → {0, 1} be the operator labeling the node u, and
let u1 and u2 be its two children. By definition, we have �u = gu(�u1 ,�u2), and, by
induction, we have �

u1
(u1,∅) = �u1 and �

u2
(u2,∅) = �u2 .

At this point, we examine the connection between Fu and Fu1,Fu2 . In essence,
Fu is obtained by re-wiring some sink nodes in Fu1 to the root node in Fu2 . More
precisely, Fu is obtained as follows from Fu1,Fu2 . (a) It has a new root node (u,∅);
(b) if e = (u, u1) is the light edge at u, then all nodes in Fu1 are renamed from (w, s′)
to (w, {e} ∪ s′) (with e ordered first); the root (u,∅) of Fu has a single outgoing edge
to the former root of Fu1 , now renamed to (u1, {e}); (c) for every sink node (b,∅) in
Fu1 , where b ∈ {0, 1}, Fu has a new edge of type-3 from u′ = (b, {e}) to some node v′
(either the root of Fu2 which is (u2,∅), or a new sink node, depending on whether
the edge is of type 3.a, 3.b, or 3.c). Here, Proposition 4.6 (2) immediately implies
that �u

u′ = gu(b, �u
v′). We also have (d) Fu

(u2,∅) = Fu2 and hence, when v′ = (u2,∅),
�u

v′ = �
u2
(u2,∅). This immediately implies that �u

u′ = gu(b, �
u2
(u2,∅)) since in the only case

(3.c) that v′
= (u2,∅), gu(b, ·) does not depend on its second argument.
We claim that the function �u

(u,∅) computed by Fu is gu(�u1
(u1,∅), �

u2
(u2,∅)): This com-

pletes the proof of Equation (3) because the induction hypothesis yields �
u1
(u1,∅) = �u1

and �
u2
(u2,∅) = �u2 , and we have gu(�u1 ,�u2) = �u. To prove our claim, we will show

that the two functions have the same values for any truth assignment θ ; in other
words:

�u
(u,∅)[θ] = gu

(
�

u1
(u1,∅), �

u2
(u2,∅)

)
[θ]. (4)

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:24 P. Beame et al.

The left-hand side of Equation (4) is obtained by following the path θ in the FBDD
Fu. This path starts at the root; follows the edge from (u,∅) to (u1, {e}), leading to
the root of a copy of Fu1 in which every node has light edge e added to the start of
the sequence of light edges in its name; and then follows a path within this modified
Fu1 , up to some former sink node (b,∅) of Fu1 , which is now u′ = (b, {e}). Therefore,
since the copy of the unmodified Fu1 must also have contained this path, we have
the following:

�
u1
(u1,∅)[θ] = b

�u
(u,∅)[θ] = �u

u′[θ].

On the other hand, we have shown above that �u
u′ = gu(b, �

u2
(u2,∅)), and, in

particular:

�u
u′[θ] = gu

(
b, �

u2
(u2,∅)

)
[θ].

By combining these three equalities, we obtain Equation (4).

5. EXPONENTIAL LOWER BOUNDS FOR ALL Hk

In this section, we prove Theorem 3.6, which gives lower bounds on the sizes of FBDDs
computing all Hk. We find it convenient to prove these bounds assuming a natural
property of FBDDs. We show that we can ensure this property with only minimal
change in FBDD size, yielding our claimed lower bounds.

Let � be a Boolean formula. A prime implicant (or minterm) of � is a term T such
that T ⇒ � and no proper subterm of T implies �. If T involves k variables, then we
call it a k-prime implicant. 1-prime implicants are also known as unit variables. For
example, X and W are unit in X ∨ Y Z ∨ YU ∨ W .

The following definition is motivated by the unit clause rule in DPLL algorithms,
which are primarily designed for satisfiability of CNF formulas. If there is any clause
consisting of a single variable or its negation (a unit clause), then DPLL immediately
sets such variables, one after another, since their value is forced.

Definition 5.1. Let F be an FBDD for a Boolean function �. Call a node u in F a unit
node if the variable tested at u is a unit in �u and a decision node otherwise. We say
that F follows the unit rule if, for every node u, if �u has a unit, then u is a unit node.

In the special case that � is a monotone formula, we can apply a transformation in
order to convert any FBDD F for � into one that follows the unit rule and is not much
larger than F .

We say that two variables X, Y of � are neighbors if there exists a partial assignment
θ such that Y is not a unit in �[θ] and is a unit in �[θ ∪{X = 1}]. If � is monotone, then
the neighbor relation is symmetric, and X, Y are neighbors iff they co-occur in some
minterm of �. We define the degree of a variable X to be the number of neighbors of X
and write �(�) for the maximum degree of any variable in �. In Section 5.2, we prove
the following:

LEMMA 5.2. If � is a monotone formula with FBDD F of size N, then � has an FBDD
of size at most �(�) · N that follows the unit rule.

Since Hk obviously has degree at most n (for variables R(i) and T (j)), we obtain the
following corollary.

COROLLARY 5.3. If Hk has an FBDD of size N, then Hk has an FBDD of size at most
nN that follows the unit rule.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:25

Now Theorem 3.6 is an immediate consequence of Corollary 5.3 together with the
following lemma.

LEMMA 5.4. Every FBDD F for Hk that follows the unit rule has size ≥ 2n − 1.

In the rest of this section, we prove Lemma 5.4 and 5.2.

5.1. Proof of Lemma 5.4

For simplicity, we first use a variant of a standard method to extend F to another FBDD
F̂ that computes the same function but is a little easier to deal with. F̂ will be obtained
from F using different choices of the set X in the following definition, depending on
the value of k.

Definition 5.5. Let F be an FBDD defined on a variable set that contains X . For
each node u in F , let Xu be the set of variables in X that appear as labels on paths from
the root to u. Define FX as follows: The nodes of FX include the nodes of F plus some
extra dummy nodes: For every edge (u, v) of F , if u tests variable X and (u, v) is labeled
by b ∈ {0, 1}, then

—if Xv = Xu or Xv = Xu ∪ {X}, then FX has edge (u, v) exactly as F does;
—otherwise, let {X1, . . . , Xa} = Xv \(Xu∪{X}). FX has dummy nodes (u, v, 1), . . . , (u, v, a)

between u and v, and there is an edge from u to (u, v, 1) labeled b, where node (u, v, i)
tests Xi and has both out-edges pointing to (u, v, i + 1) for i < a and pointing to v for
(u, v, a). Further, define X(u,v,i) = Xu ∪ {X1, . . . , Xi−1}.
The following is immediate.

PROPOSITION 5.6. For any set X contained in the variable set for F , FX is an FBDD
that computes the same function as F does, and FX satisfies the unit rule if and only
if F does. Further, for every node u in FX , every path in FX from the root to u tests
precisely the same subset Xu of the variables in X (possibly testing additional variables
outside X).

Let F compute Hk. For k = 0, let F̂ = F . For k odd, let F̂ = FX for X =
{R(1), . . . , R(n), T (1), . . . , T (n)}. Finally, for k > 0 even, let F̂ = FX , where X =
{R(i), T (j), S1(i, j) | i, j ∈ [n]}. We will prove the lower bound by considering a spe-
cial class of paths in F̂ that end at nodes of F ; we call these admissible paths. We give
such a definition and prove two properties: There are at least 2n −1 distinct admissible
paths, and no two admissible paths can lead to the same node. These two properties
prove the lemma. We begin by defining a set of admissible total assignments on which
we will base our definition of admissible paths.

Definition 5.7. Let k be a non-negative integer. The set Ak of admissible assignments
consists of all total assignments θ to the variables of Hk satisfying the following:

(1) If k = 0, for every i, j ∈ [n], θ assigns values so S(i, j) = ¬(R(i) ∧ T (j)).
(2) If k is odd, then for all i, j ∈ [n], θ assigns values so

—S�(i, j) = ¬(R(i) ∨ T (j)) for � odd, and
—S�(i, j) = R(i) ∨ T (j) for � even.

(3) If k > 0 is even, then for all i, j ∈ [n], θ assigns values so
—S1(i, j) = ¬R(i),
—S�(i, j) = ¬(¬R(i) ∨ T (j)) for � even, and
—S�(i, j) = ¬R(i) ∨ T (j) for � > 1 odd.

Figure 7 illustrates admissible assignments for k = 0, 5, and 4.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:26 P. Beame et al.

Fig. 7. The patterns for admissible assignments for k = 0, k = 5, and k = 4.

Definition 5.8. Let i0, j0 ∈ [n]. For k = 0 define the set Rk
i0 of variables in row i0 to

be R(i0), S(i0, j) for all j ∈ [n]; for k ≥ 1 define Rk
i0 to be all R(i0), S1(i0, j), . . . , Sk(i0, j)

for all j ∈ [n]. For k = 0 define the set Ck
j0 of variables in column j0 to be to be

S(i, j0), T (j0) for all i ∈ [n]. For k odd define the set Ck
j0 to be S1(i, j0), . . . , Sk(i, j0), T (j0)

for all i ∈ [n] and for k > 0 even, define the set Ck
j0 to be S2(i, j0), . . . , Sk(i, j0), T (j0) for

all i ∈ [n]. Finally, for each k define the set T k
i0 j0 of variables in the (i0, j0) transversal by

T 0
i0 j0 = {R(i0), S(i0, j0), T (j0)} and T k

i0 j0 = {R(i0), S1(i0, j0), . . . , Sk(i0, j0), T (j0)} for k > 0.

Note that we omit S1(i, j0) for all i from the variables in column j0 when k > 0 is even.
This is natural because among all admissible assignments, each of these variables is
equal to the negation of R(i) and hence does not depend on the column j0.

PROPOSITION 5.9.

(1) For every integer k ≥ 0, and every θ ∈ Ak, we have Hk[θ] = 0.
(2) For fixed k > 0 and each pair of values bR, bT ∈ {0, 1}, there is precisely one sequence

of values S1(i, j), . . . Sk(i, j) that is agreed on by all extensions of R(i) = bR, T (j) =
bT in Ak. The same is true for S(i, j) when k = 0.

(3) For k odd or k = 0, the admissible assignments are symmetric with respect to rows
and columns.

(4) For k > 0 even, an assignment θ to (R, S1, . . . , Sk, T) is admissible if and only if
—R(i) = ¬S1(i, j) for all i, j ∈ [n], and
—the unique assignment θk−1 to (R′, S′

1, . . . , S′
k−1, T ′) given by R′(i) =

S1(i, j), S′
1(i, j) = S2(i, j), . . . , S′

k−1(i, j) = Sk(i, j), T ′(j) = T (j) is admissible.
(5) For any integer k and any i, j ∈ [n],

(a) for any assignment θ ∈ Ak, there is an assignment θ ′ ∈ Ak that agrees with θ
everywhere except possibly in the variables in Ck

j and has the opposite value of
T (j) from θ .

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:27

(b) for any assignment θ ∈ Ak, there is an assignment θ ′ ∈ Ak that agrees with
θ everywhere except in the variables in Rk

i and has the opposite value of R(i)
from θ .

(c) for every assignment θ ∈ Ak and every variable X in T k
ij , there is an assignment

θ ′′ ∈ Ak that agrees with θ everywhere except in the variables in Rk
i ∪Ck

j that has
the opposite value for X.

PROOF. Parts (1), (2), (3), and (4) are immediate by inspection. We show part (5) by
cases based on the value of k.

First, suppose that k = 0: For sub-part (5a), we create θ ′ from θ by flipping the value
of T (j) and flipping the value of S(i, j) for every i ∈ [n] for which R(i) = 1. For sub-part
(5b), we create θ ′ from θ by flipping the value of R(i) and flipping the value of S(i, j)
for every j ∈ [n] for which T (j) = 1. Finally, for sub-part (5c), by parts (5a) and (5b) we
can already do this for R(i) and T (j). To obtain θ ′′ that flips S(i, j), if θ sets either R(i)
or T (j) to 1 then the corresponding θ ′ from flipping the other one from sub-parts (5b)
or (5a) will flip S(i, j). If θ sets R(i) = T (j) = 0, then we first apply (5b) to get θ ′ having
R(i) = 1 and then apply (5a) to get θ ′′ that flips S(i, j).

Now suppose that k is odd: For sub-part (5a), we create θ ′ from θ by flipping the
value of T (j) and flipping the values of S1(i, j), . . . , Sk(i, j) for every i ∈ [n] for which
R(i) = 0. Sub-part (5b) is symmetric—we create θ ′ from θ by flipping the value of R(i)
and flipping the values of S1(i, j), . . . , Sk(i, j) for every j ∈ [n] for which T (j) = 0.
Finally, for sub-part (5c), by parts (5a) and (5b) we can already do this for R(i) and
T (j); whenever θ sets at least one of R(i) = 0 or T (j) = 0, we can also do this for
all of S1(i, j), . . . , Sk(i, j) by flipping the other one. If R(i) = T (j) = 1, then we first
apply (5b) to get θ ′ having R(i) = 0 and then apply (5a) to get θ ′′ that flips each of
S1(i, j), . . . , Sk(i, j).

Finally, we handle the case that k > 0 is even. Using part (4) we let θk−1 be the
translation of assignment θ given by R′, S′

1, . . . , S′
k−1, T ′. It is easy to see that applying

(5a), (5b), and (5c) to θk−1 to yield θ ′
k−1 or θ ′′

k−1 when transformed back to length k by
part (4) yields the modified elements of Ak with the required properties since no S1(i, j)
is in Ck

j .

Definition 5.10. Let π be a partial assignment to the variables of Hk. We view π as a
set of assignments to individual variables and so write π ⊆ π ′ iff partial assignment π ′
extends π . We write π ‖ π ′ iff π and π ′ are consistent partial assignments. If π ‖ π ′ are
consistent partial assignments, then we write π ∩ π ′ for the partial assignment where
they agree. If π is a partial assignment consistent with some total assignment in Ak,
then we define π∗ = ⋂

θ∈Ak, θ‖π θ , the partial assignment forced by π .

Note that by definition π ⊆ π∗.

PROPOSITION 5.11. Let k > 0 and i, j ∈ [n].

(1) Suppose that k is odd and π∗ sets S�(i, j) for some � ∈ [k]. If π does not set any
variable in Rk

i , then π∗ sets T (j) = 1; if π does not set any variable in Ck
j , then π∗

sets R(i) = 1.
(2) Suppose that k is even and π∗ sets S�(i, j) for some � with 2 ≤ � ≤ k. If π does not set

any variable in Rk
i , then π∗ sets T (j) = 1; if π does not set any variable in Ck

j , then
π∗ sets R(i) = 0 and S1(i, j) = 1.

PROOF. (1) First, consider k odd and suppose that π does not set any variable in Rk
i .

By Definition 5.7, the fact that π∗ sets S�(i, j) is equivalent to π∗ fixing the value of
R(i) ∨ T (j). Suppose that π∗ does not set T (j) = 1. Then there is some assignment θ in

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:28 P. Beame et al.

Ak consistent with π∗ such that θ sets T (j) = 0. By Proposition 5.9(5b) there is another
assignment θ ′ in Ak that agrees with θ everywhere except in the variables in Rk

i and
flips the value of R(i). Since π does not set any variable in Rk

i and θ is consistent with
π , θ ′ is also consistent with π . Therefore θ ′ is also consistent with π∗. However, θ and θ ′
both set T (j) = 0 but differ on the value of R(i), so π∗ does fix the value of R(i) ∨ T (j),
a contradiction.

By the above case together with Proposition 5.9(3), the fact that π does not set any
variable in Ck

j implies that π∗ sets R(i) = 1.
(2) Next consider k > 0 even and suppose that π does not set any variable in Ck

j .
By Definition 5.7, the fact that π∗ sets S�(i, j) for 2 ≤ � ≤ k is equivalent to π∗ fixing
the value of ¬R(i) ∨ T (j). Suppose that π∗ does not set R(i) = 0. Then there is some
assignment θ in Ak consistent with π∗ such that θ sets R(i) = 1. Again, as in (1), by
Proposition 5.9(5a) there is another assignment θ ′ in Ak that agrees with θ everywhere
except in the variables in Ck

j and flips the value of T (j). Since π does not set any
variable in Ck

j and θ is consistent with π , θ ′ is also consistent with π . Therefore, θ ′ is
also consistent with π∗. However, θ and θ ′ both set R(i) = 1 but differ on the value of
R(i), so π∗ does fix the value of ¬R(i) ∨ T (j), a contradiction. Therefore π∗ must set
R(i) = 0 and, by Definition 5.7, π∗ must also set S1(i, j) = 1.

The case when π does not set any variable in Rk
i is essentially identical to the case

spelled out in (1), except that the function leading to the contradiction is ¬R(i) ∨ T (j)
rather than R(i) ∨ T (j).

Definition 5.12. Let P be path in FBDD F̂ and u be a node in P. Identify P with the
partial assignment its edges define. Let Pu be the partial assignment defined by the
prefix of P ending at u and Xu be the variable tested at node u.

Suppose now that P is consistent with some assignment in Ak. We say that Xu = b is
forced in P iff P∗

u sets Xu to b; otherwise, we say that Xu = b is a free assignment to Xu.
Let core(P) be the partial assignment that is the union of all free assignments in P.

PROPOSITION 5.13. If P is consistent with some assignment in Ak, then (core(P))∗ = P∗.

Note that the definition of core(P) depends on the order that variables are tested
in P. Moreover, core(P) may not even be a minimal set of free assignments along P;
for example, for odd k, a path P that first sets S1(i, j) = 0 and then sets T (j) = 1
will have both variable assignments in core(P), but the variable assignment T (j) = 1
forces S1(i, j) = 0.

Definition 5.14. Suppose that F computes Hk and follows the unit rule, and let F̂
be its extension as defined above (following Proposition 5.6). A path P in F̂ is called
admissible iff it ends at a node of F that is not a unit node and is consistent with some
assignment in Ak and |core(P)| ≤ n − 1. Thus, in particular, every admissible path is
consistent with some admissible total assignment.

Lemma 5.4 follows from two lemmas, which we state here and prove in the rest of
the section.

LEMMA 5.15. Let P be a admissible path in F̂ . If |core(P)| < n − 1, then there are
two distinct admissible paths P ′ and P ′′ extending P such that |core(P ′)| = |core(P ′′)| =
|core(P)| + 1.

Since the empty path from the root of F̂ to itself is admissible, the following Corollary
is immediate by induction.

COROLLARY 5.16. There are at least 2n − 1 admissible paths in F̂ .

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:29

The second lemma is as follows:

LEMMA 5.17. If P0, P1 are admissible paths in F̂ ending at some node v (of F), then
P0 = P1.

Corollary 5.16 and Lemma 5.17 immediately imply Lemma 5.4.
We now prove Lemmas 5.15 and 5.17. To prove Lemma 5.15 we first show the follow-

ing two lemmas:

LEMMA 5.18. Let P be an admissible path in FBDD F̂ that computes Hk. Then there
is some i0, j0 ∈ [n] such that no variable in Rk

i0 or Ck
j0 is set by core(P). For any such i0, j0,

P∗ does not set any variables in T k
i0, j0 . In particular, Hk[P∗] is not a constant function.

PROOF. Since |core(P)| ≤ n−1, there must be some pair (i0, j0) such that core(P) does
not set any variable in Rk

i0 ∪ Ck
j0 . Let (i0, j0) be any such pair. By Proposition 5.9(5c),

for any X ∈ T k
i0 j0 there are two assignments θ and θ ′ in Ak that agree with core(P)

but have different values for X so (core(P))∗ does not set any variable in T k
i0 j0 . Hence

by Proposition 5.13, P∗ does not set any variable in T k
i0 j0 . We can extend P∗ by setting

variables in T k
i0 j0 to 1 to make Hk evaluate to 1. On the other hand, since P∗ is consistent

with an assignment in Ak, by Proposition 5.9, Hk also evaluates to 0 on some extension
of P∗ and hence Hk[P∗] is not constant.

LEMMA 5.19. Suppose that F̂ computes Hk. Let P be an admissible path in F̂ . All of
the assignments of core(P) are set at nodes of F and none of the variable assignments
in core(P) involves the unit rule.

PROOF. All unit rule assignments are forced since Hk evaluates to 0 on all elements
of Ak. There is nothing else to prove for k = 0 since in that case F̂ = F . For the other
cases, we need to show that every assignment in P at a dummy node of F̂ is forced.
Case k is odd. In this case, the dummy node must test either R(i) or T (j). First,
suppose that variable R(i) is tested at a dummy node (u, v, �) of F̂ . By definition, the
prefix P1 = P(u,v,1) of P is admissible. Also, by definition, Hk[P1] does not depend on
R(i). Since P1 is admissible, by Lemma 5.18 there are i0, j0 ∈ [n] such that core(P1) does
not set any variable in Ck

j0 and P∗
1 does not set any variable in T k

i0 j0 ; in particular, P∗
1

does not set T (j0). Now since P1 does not set R(i) but Hk[P1] does not depend on R(i),
to avoid having the prime implicant R(i)S1(i, j0), P1 must set S1(i, j0) = 0, and hence
(core(P1))∗ sets S1(i, j0) = 0. Therefore, by Proposition 5.11(1) applied to core(P1), we
obtain that P∗

1 sets R(i) = 1, and hence the value of R(i) is forced in P, as required.
By Proposition 5.9(3), the case when the variable tested at the dummy node is T (j) is
completely dual and T (j) = 1 is also forced.
Case k > 0 is even. Now there are three possibilities for the variable tested at the
dummy node: some R(i), some T (j), or some S1(i, J). Suppose that R(i) is tested at a
dummy node (u, v, �) and let P1 = P(u,v,1). For any fixed j ∈ [n], if P1 sets S1(i, j) then P∗

1
sets R(i) = ¬S1(i, j) and hence the value of R(i) is forced in P; on the other hand, if P1
does not set S1(i, j), then R(i)S1(i, j) is a 2-prime implicant of Hk[P1], which contradicts
the fact that Hk[P1] does not depend on R(i) since R(i) labels dummy node (u, v, �).

Similarly, if S1(i, j) is tested at dummy node (u, v, �), then if P1 sets R(i), then P∗
1

sets S1(i, j) = ¬R(i); otherwise, R(i)S1(i, j) is a 2-prime implicant of Hk[P1], which
contradicts the fact that Hk[P1] does not depend on S1(i, j) since it is tested at (u, v, �).
Again, S1(i, j) is forced on P.

Finally, suppose that the label of dummy node (u, v, �) is T (j). Since P1 is admissible,
by Lemma 5.18 there are i0, j0 ∈ [n] such that core(P1) does not set any variable in

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:30 P. Beame et al.

Rk
i0 and P∗

1 does not set any variable in T k
i0 j0 ; in particular, P∗

1 does not set R(i0). Now
since (core(P1))∗ does not set T (j) and Hk[P1] does not depend on T (j), P1 must set
Sk(i, j) = 0, and hence (core(P1))∗ must set Sk(i, j) = 0. Applying Proposition 5.11(2) to
core(P1), we obtain that P∗

1 sets T (j) = 1 and thus the value of T (j) is forced in P.

These two lemmas immediately let us prove Lemma 5.15.

PROOF OF LEMMA 5.15. Let P be an admissible path in F̂ and let v be the node of F at
which F̂ ends. By Lemma 5.18, v is not an output node and hence it tests a variable X′.
If the value of X′ is set in P∗, then we extend P following that value, and the value Hk
is not constant so the path can be continued. By Lemma 5.19, we can repeat following
forced values until a a node w of F is reached that is not a unit node and does not
test a variable whose value is set in P∗. The resulting path to w will be admissible by
definition and will have the same core as core(P). By Lemma 5.18, w cannot be a leaf
node of F and so must test a variable X that is not set in P∗. The admissible path P ′
will extend the path from w using edge 0, and P ′′ will extend it using edge 1. Both are
consistent with assignments in Ak by definition. To make P ′ and P ′′ admissible, we
follow P ′ and P ′′ through any forced values at dummy nodes or unit nodes of F̂ until
they next reach a non-unit node of F . Lemma 5.19 ensures that such a node will be
reached. Observe that core(P ′) = core(P) ∪ {X = 0} and core(P ′′) = core(P) ∪ {X = 1} so
the core sizes are precisely 1 more than |core(P)| and hence at most n−1 as required.

In the rest of this section, we prove Lemma 5.17.

PROOF OF LEMMA 5.17. Since admissible path P0 and P1 in F̂ end at the same node
v of F computing Hk, they have Hk[P0] = Hk[P1]. Assume that P0
= P1. Then P0 and
P1 must diverge at some node of F̂ , so there is some variable X set by both of them on
which P0 and P1 differ.
Case k = 0. There are three sub-cases: X = R(i), X = S(i, j), or X = T (j) for some
i, j ∈ [n].

Suppose, first, that P0 sets R(i) = 0 and P∗
1 sets R(i) = 1. (Note that this is weaker

than assuming that P1 sets R(i) = 1 but we will find the generality useful.) Since P1
is admissible, by Lemma 5.18 there is some i0, j0 ∈ [n] such that core(P1) does not set
any variable in Rk

i0 or Ck
j0 , and P∗

1 does not set T (j0) (which is in T k
i0 j0). Now if S(i, j0)

is not set to 0 by P1, then Hk[P1], which cannot have any 1-prime implicants, would
have a prime implicant, either R(i)S(i, j0)T (j0) or S(i, j0)T (j0), that is not a prime
implicant of Hk[P0], which is a contradiction. Hence P1 sets S(i, j0) = 0. But then P∗

1
sets R(i) = 1 and S(i, j0) = 0, which says that P∗

1 sets T (j0) = 1 by admissibility, which
is a contradiction to T (j0) being unset by P∗

1 . The subcase when P0 sets T (j) = 0 and
P1 sets T (j) = 1 is completely dual to the case for R using Proposition 5.9 (3) and R(i0)
instead of T (j0).

Finally, suppose that P0 sets S(i, j) = 0 and P1 sets S(i, j) = 1. Therefore, R(i)T (j) is
not a 2-prime implicant of Hk[P0]. Also, by the definition of A0, since P0 is admissible,
P∗

0 sets R(i) = 1 and T (j) = 1. For P1, since Hk[P0] = Hk[P1], we must have P1 set
R(i) = 0 or T (j) = 0, because otherwise Hk[P1] has a 2-prime implicant R(i)T (j). Since
both R(i) and T (j) are set to 1 by P∗

0 , we obtain a contradiction using the previous
subcases: if P1 sets R(i) = 0, then we use the first subcase; and if P1 sets T (j) = 0, then
we use the second.
Case k is odd. We now consider the case that k is odd: First, suppose that P0 sets
R(i) = 0 and P1 sets R(i) = 1. Since P1 is admissible, by Lemma 5.18 there is some
i0, j0 ∈ [n] such that core(P0) does not set any variable in Ck

j0 and P∗
0 does not set T (j0)

(which is in T k
i0 j0). Note that by Proposition 5.11(1) applied to core(P0), P0 also cannot set

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:31

any of S1(i, j0), . . . , Sk(i, j0) since it sets R(i) = 0 and core(P0) does not set any element
in Ck

j0 . Also, since P1 is admissible and P1 sets R(i) = 1, P1 must set S1(i, j0) = 0 by
the unit rule. Now if k = 1, then this means that S1(i, j0)T (j0) is a 2-prime implicant
of Hk[P0] but this would be a contradiction since no term containing S1(i, j0) can be
a 2-prime implicant of Hk[P1]; if k ≥ 3, then S1(i, j0)S2(i, j0) is a 2-prime implicant of
Hk[P1], again yielding a contradiction.

Again, using Proposition 5.9 (3), the subcase when P∗
0 sets T (j) = 0 and P1 sets

T (j) = 1 is completely dual to the case for R(i).
Finally, suppose that P0 sets S�(i, j) = 0 and P1 sets S�(i, j) = 1 for some � ∈ [k].

We now use the fact that both paths end at a decision node, and so no units remain in
Hk[P0] = Hk[P1]. Observe that since P1 sets S�(i, j) = 1, by the unit rule P1 also sets
S�−1(i, j) = 0 if � > 1 and S�+1(i, j) = 0 if � < k. If � = 1, then P1 must set R(i) = 0
and if � = k, then P1 must set T (j) = 0. Therefore there is no 2-prime implicant
containing these variables in Hk[P1]. On the other hand, P∗

0 sets the corresponding
variables to 1. Since Hk[P0] = Hk[P1] cannot be identically 1, and cannot have any
2-prime implicants containing S�−1(i, j) or S�+1(i, j), then P0 must set S�−2(i, j) = 0 if
� > 2 and S�+2(i, j) = 0 if � < k − 1. If � = 2 or � = k − 1, then P0 must set R(i) = 0 or
T (j) = 0, respectively. Applying this argument inductively, we ensure that

—P� mod 2 sets R(i) = 0, S2(i, j) = 0, . . . , Sk−1(i, j) = 0, T (j) = 0 and
—P(�+1) mod 2 sets S1(i, j) = 0, S3(i, j) = 0, . . . , Sk(i, j) = 0.

But since both P0 and P1 arrive at the same node of F̂ , P(�+1) mod 2 must also set R(i)
and T (j), and since it is not consistent with the same assignment to S1(i, j), . . . , Sk(i, j)
given by P� mod 2, it must set at least one of R(i) or T (j) to 1, yielding a contradiction
based on one of the previous two subcases.
Case k > 0 is even. This time we also need a fourth subcase for when P0 sets
S1(i, j) = 0 and P1 sets S1(i, j) = 1. By the correspondence with the case of k − 1
on R′, S′

1, . . . , S′
k−1, T ′ given by Proposition 5.9 (4), we obtain a contradiction using the

reasoning for k − 1 with paths P ′
0 setting R′(i) = 0 and P ′

1 setting R′(i) = 1.
If instead P0 sets R(i) = 1 and P1 sets R(i) = 0, then the unit rule ensures that P0

sets S1(i, j) = 0, which in turn means that P1 sets S1(i, j) by the properties of F̂ , and
this must be to 1 since P1 is admissible. We now can apply the previous case.

If P0 sets T (j) = 0 and P1 sets T (j) = 1, then we could use some of the symmetry of
R′, S′, T ′ and some extra work, but instead we argue directly: Since P0 is admissible,
by Lemma 5.18 there is some i0, j0 ∈ [n] such that core(P0) does not set any element
of Rk

i0 and P∗
0 = (core(P0))∗ does not set any element of T k

i0 j0 ; in particular, it does not
set R(i0). Hence it also does not set S1(i0, j) since any admissible assignment that sets
one of R(i0), S1(i0, j) must set the other to the opposite value. By Proposition 5.11(2)
applied to core(P0), P0 cannot set any of S2(i0, j), . . . , Sk(i0, j) since it sets T (j) = 0 and
core(P0) does not set any element of Rk

i0 . By the unit rule P1 must set Sk(i0, j) = 0.
But then Sk−1(i0, j)Sk(i0, j) would not be a 2-prime implicant of Hk[P1] but would be a
2-prime implicant of Hk[P0], a contradiction.

Finally, suppose that P0 sets S�(i, j) = 0 and P1 sets S�(i, j) = 1 for some � with 2 ≤
� ≤ k. We now use the fact that no units remain in Hk[P0] = Hk[P1]. Observe that since
P1 sets S�(i, j) = 1, by the unit rule P1 also sets S�−1(i, j) = 0 and S�+1(i, j) = 0 if � < k.
If � = k, then P1 must set T (j) = 0. Therefore there is no 2-prime implicant containing
these variables in Hk[P1]. On the other hand, if 2 < � < k, P∗

0 sets the corresponding
variables to 1. Since Hk[P0] = Hk[P1] cannot be identically 1, and cannot have any
2-prime implicants containing S�−1(i, j) or S�+1(i, j), then P0 must set S�−2(i, j) = 0 if
� > 3 and S�+2(i, j) = 0 if � < k − 1. If � = 3 or � = k − 1, then P0 must set S1(i, j) = 0
or T (j) = 0, respectively. Applying this argument inductively, we ensure that

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:32 P. Beame et al.

—P� mod 2 sets S2(i, j) = 0, . . . , Sk(i, j) = 0 and
—P(�+1) mod 2 sets S1(i, j) = 0, S3(i, j) = 0, . . . , Sk−1(i, j) = 0, T (j) = 0.

But since both P0 and P1 arrive at the same node of F̂ , P� mod 2 must also set S1(i, j)
and T (j), and since it is not consistent with the same assignment to S2(i, j), . . . , Sk(i, j)
given by P(�+1) mod 2, it must set at least one of S1(i, j) or T (j) to 1, yielding a contradic-
tion based on one of the previous subcases.

5.2. Proof of Lemma 5.2

We begin with a simple property of monotone functions. For a formula �, let U (�)
denote the set of units in �. The following proposition will be useful because it implies
that for monotone formulas, setting units to 0 cannot create additional units.

PROPOSITION 5.20. If � is a monotone function and W is a variable in �, then
U (�[W = 0]) ⊆ U (�).

Let F = (V, E) be an FBDD for a monotone formula �, where V and E, respectively,
denote the nodes and edges of F . For every edge e = (u, v) ∈ E, define U (e) = U (�v) −
U (�u). Observe that, by Proposition 5.20, any edge e for which U (e) is non-empty must
be labeled 1 in F .

Fix some canonical ordering π on the variables of �. Define the following transfor-
mation on F to produce an FBDD F ′ for � that follows the unit rule: The set of nodes
V ′ of F ′ is given by:

V ′ = V ∪ {(e, i) | e = (u, v) ∈ E, u ∈ V, 1 ≤ i ≤ |U (e)|}.
The other details of F ′ are given as follows:

—For e = (u, v) ∈ E, the new vertices (e, 1), . . . , (e, |U (e)|) will appear in sequence on a
path from u to v that replaces the edge e. (If U (e) is empty, then the original edge e
remains.)

—Edge (u, (e, 1)) in F ′ will have label 1, which is the label that e has in F .
—The variable labeling each new vertex (e, i) in V ′ will be the ith element of U (e) under

the ordering π ; we denote this variable by Ze,i.
—The 1-edge out of each new vertex (e, i) will lead to the 1-sink. The 0-edge will lead

to the next vertex on the newly created path.
—For a vertex w ∈ V labeled by a variable W , if W appears in U (e) for any edge

e = (u, v) such that there is a path in F from v to w, then the node w becomes a no-op
node in F ′, namely its labeling variable W is removed, its 1-outedge is removed, and
its 0-outedge is retained with no label. Otherwise, w keeps the variable label W as
in F and its outedges remain the same in F ′.

The size bound required for Lemma 5.2 is immediate by construction since the degree
of a variable upper-bounds the number of new units that setting it can create. However,
in order for this construction to be well defined we need to ensure that the conversion
to no-op nodes does not conflict with the conversion of edges to paths of units.

PROPOSITION 5.21. If the variable W labeling w is in U (e) for some edge e = (u, v) for
which there is a path from v to w, then the outedges e′ of w have U (e′) = ∅.

PROOF. The assumption implies that W is a unit of some �v. Therefore �v = W ∨ �′
v

for some �′
v. Since F is an FBDD and W labels w, W is not set on the path from v to

w, and hence �w = W ∨ �′′ for some formula �′′. A 0-outedge e0 from w always has
U (e0) = ∅ and the 1-outedge e1 = (w,w′) of w sets W to 1, and hence �w′ = 1, which
implies that U (e1) is also empty.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:33

The following simple proposition is useful in reasoning about the correctness of our
construction.

PROPOSITION 5.22. If there is a path from u to v in F and X ∈ U (�u), then X ∈ U (�v),
�v = 1, or X is tested on the path from u to v, and hence �v does not depend on X.

PROOF. X ∈ U (�u) implies that �u = X ∨ F for some monotone formula F. If X is
set on the path from u to v, then �v does not depend on X; otherwise �v = X ∨ F ′ for
some monotone formula F ′ and either X is a prime implicant or F ′ is the constant 1
and hence �v = 1.

Taken together with the size bound for our construction, the following lemma imme-
diately implies Lemma 5.2.

LEMMA 5.23. Let � be monotone and computed by FBDD F . Then F ′ is an FBDD for
� that follows the unit rule.

PROOF. We first show that F ′ is an FBDD, namely, every root-leaf path P in F ′ tests
each variable at most once. P contains old nodes u ∈ V and new nodes (e, i). Suppose
that a variable X is tested twice along a path. Clearly, the two tests cannot be done
by old nodes since F is an FBDD. It cannot be tested by an old node u and later by a
new node (e, i), because, once tested by u, for any descendant node v, the formula �v no
longer depends on X, and hence X
∈ U (e). It cannot be first tested by a new node (e, i)
and then later by an old node u since the test at the old node would have been removed
and converted to a no-op by the last item in the construction of F ′. Finally, suppose
that the two tests are done by two new nodes (e1, i), and (e2, j) on P, where we write
e1 = (u1, v1) and e2 = (u2, v2). Then we must have X ∈ U (v1) and X
∈ U (u2) where there
is a path from v1 to u2 in F . By Proposition 5.22, this implies that �u2 does not depend
on X, which contradicts the requirement that X ∈ U (v2) since v2 is a child of u2.

By construction, F ′ obviously follows the unit rule. It remains to prove that F ′
computes �. We show something slightly stronger: For any function F, define F− to be
F[U (F) = 0], in which all variables in U (F) are set to 0. We claim by induction that
for all nodes of v ∈ V , if θ ′ labels a path in F ′ from the root to v, then �[θ ′] = �−

v , and
θ ′ = θ ∪ {U (�v) = 0} for some θ that labels a path in F from the root to v. This trivially
is true for the root. If it is true for the output nodes, then F ′ correctly computes � since
constant functions have no units. Let v ∈ V and suppose that this is true for all vertices
u such that there is some path θ ′ from the root to v in F ′ for which u is the last vertex
in V on θ ′. By the construction, for each such u, there must be an edge e = (u, v) ∈ E.
Suppose that the variable tested at u in F is W . We have three cases: If e = (u, v) ∈ E
is a 1-edge, then �v = �u[W = 1]. Every path θ ′ from the root to v through u is of the
form θ ′ = θ ∪ {W = 1} ∪ {U (e) = 0} for some θ that labels a path from the root to u in F ′.
(This is true even if U (e) is empty.) By induction, �[θ] = �−

u = �u[U (�u) = 0] and, by
definition, U (�v) = U (�u) ∪ U (e) so �[θ ′] = �u[W = 1 ∪ {U (�v) = 0}] = �v[U (�v) = 0],
as required. If e = (u, v) ∈ E is a 0-edge of F , then �v = �u[W = 0]. If u became a no-op
vertex in F ′, then there was some ancestor w of u at which W became a unit of �w. Since
F is an FBDD, it does not test W between that ancestor and u. By Proposition 5.22,
either W ∈ U (�u) or �u = 1. In the latter subcase, �v = �u = 1, and the correctness for
u implies that for v. In the former case, U (�u) = U (�v)∪{W} and �−

u = �−
v , and, again,

the correctness for �−
u implies that for �−

v . In the case that u does not become a no-op
vertex, W is not a unit of �u so U (�u) = U (�v), and the fact that all paths to u yield
�u[U (�u) = 0] = �u[U (�v) = 0] for all paths to v that pass through u as the previous
vertex in V , The last edge to v adds the extra W = 0 constraint. Adding this constraint
to �u[U (�v) = 0] yields �v[U (�v) = 0] = �−

v , as required. Therefore the statements
holds for all possible paths from the root to v.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:34 P. Beame et al.

6. LOWER BOUNDS FOR BOOLEAN COMBINATIONS OVER HK

In this section, we prove Theorem 3.9. Throughout this section we fix f (X) =
f (X0, . . . , Xk), a Boolean function that depends on all variables X, and a domain
size n > 0. To prove Theorem 3.9, we first prove that any FBDD for the lineage
of the query Q = f (hk0, . . . , hkk) can be converted into a multi-output FBDD for all of
Hk = (Hk0, Hk1, . . . , Hkk) with at most an O(k2kn3) increase in size. The proof is construc-
tive. Theorem 3.9 then follows immediately using Theorem 3.6 since any multi-output
FBDD for Hk yields an FBDD for Hk of the same size.

Recall that Hk� denotes the lineage of hk� and let � = f (Hk) = f (Hk0, . . . , Hkk) be the
lineage of Q.

If F is an FBDD for � = f (Hk), then let �u denote the Boolean function computed
at the node u; thus � = �r, where r is the root node of F . By the correctness of F , all
paths P leading to u have the property that �[P] = �u.

In order to produce the multi-output FBDD F ′ for Hk from F computing � = f (Hk),
we would like to ensure that every internal node v of F ′ has the property that all paths
P leading to v not only are consistent with the same residual function �v = �[P], but
they also all agree on the residual values of Hk�(v) = Hk�[P] for all �. Since we are
not easily able to characterize its paths, we find it convenient to define this property
not only with respect to paths of F ′ but also for formulas �v with respect to arbitrary
partial assignments θ . We use the term transparent to describe the property that the
value of �v automatically also reveals the values for all Hk�(v). Call a formula � a
restriction of � if � = �[θ] for some partial assignment θ .

Definition 6.1. Fix � = f (Hk0, . . . , Hkk). A formula � that is a restriction of � is
called transparent if there exist k + 1 formulas ϕ0, . . . , ϕk such that, for every partial
assignment θ , if � = �[θ], then Hk0[θ] = ϕ0, . . . , Hkk[θ] = ϕk. We say that � defines
ϕ0, . . . , ϕk.

In other words, assuming that � is a restriction of �, � = �[θ] for some partial
assignment θ , then � is transparent if the formulas Hk0[θ], . . . , Hkk[θ] are uniquely
defined, that is, are independent of θ . Equivalently, for any two assignments θ, θ ′, if
�[θ] = �[θ ′] = �, then for all 0 ≤ � ≤ k, Hk�[θ] = Hk�[θ ′].

Example 6.2. Let k = 3 and f = X0 ∨ X1 ∨ X2 ∨ X3. Given a domain size n > 0, the
formula � is as follows:

� =
∨
i, j

R(i)S1(i, j) ∨
∨
i, j

S1(i, j)S2(i, j)

∨
i, j

S2(i, j)S3(i, j) ∨
∨
i, j

S3(i, j)T (j).

H30, . . . , H33 denote each of the four disjunctions above. Let � = R(3)S1(3, 7) ∨
S1(3, 7)S2(3, 7). There are many partial substitutions θ for which � = �[θ]: For ex-
ample, θ may set to 0 all variables with index
= (3, 7), and also set S3(3, 7) = T (7) = 0,
or it could set S3(3, 7) = 0, T (7) = 1. There are many more choices for variables with
index
= (3, 7). However, one can check that, for any θ such that � = �[θ], we have the
following:

H30[θ] = R(3)S1(3, 7) H31[θ] = S1(3, 7)S2(3, 7)
H32[θ] = 0 H33[θ] = 0.

Therefore, � is transparent. On the other hand, consider �′ = S1(3, 7). This formula
is no longer transparent, because it can be obtained by extending any θ that produces
� with R(3) = 0, S2(3, 7) = 1, R(3) = 1, S2(3, 7) = 0, or R(3) = S2(3, 7) = 1, and these

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:35

lead to different residual formulas for H30 and H31 (namely 0 and S1(3, 7), S1(3, 7) and
0, or S1(3, 7) and S1(3, 7)).

In order to convert an FBDD F for � = f (Hk) into a multi-output FBDD for Hk =
(Hk0, . . . , Hkk), we will try to modify it so the formulas defined by the restrictions
reaching its nodes become transparent without much of an increase in the FBDD size.
To do this, we will add new intermediate nodes at which the formulas may not be
transparent but we will be able to reason about its computations based on the nodes
where the formulas are transparent.

Observe that if we know that �v = �[θ] is transparent and we have a small multi-
output FBDD Fθ for Hk[θ], then we can simply append that small FBDD at node v
to finish the job and ignore what the original FBDD did below v. Intuitively, the rea-
son that Hk and Hk might not have such small FBDDs is the tension between the
R(i)S1(i, j) terms, which gives a preference for reading entries in row-major order and
the Sk(i, j)T (j) terms, which suggest column-major order, together with the interme-
diate S�(i, j)S�+1(i, j) terms that link these two conflicting preferences. If all of those
links are broken, then it turns out that there is no conflict in the variable order and
the difficulty disappears. This motivates the following definition, which we will use to
make this intuitive idea precise.

Definition 6.3. Let θ be a partial assignment to Var(Hk).

—A transversal in θ is a pair of indices (i, j) such that R(i)S1(i, j) is a prime implicant
of Hk0[θ], Sk(i, j)T (j) is a prime implicant of Hkk[θ], and S�(i, j)S�+1(i, j) is a prime
implicant of Hk�[θ] for all � ∈ [k − 1].

—Call two pairs of indices (or transversals) (i1, j1), (i2, j2) independent if i1
= i2 and
j1
= j2.

—A Boolean formula is called transversal-free if there exists a θ such that � = �[θ]
and θ has no transversals.

We now see that assignments without transversals, or even those with few indepen-
dent transversals, yield small FBDDs.

LEMMA 6.4. Let θ be a partial assignment to V ar(Hk). If θ has at most t indepen-
dent transversals, then there exists a multi-output FBDD for (Hk0[θ], . . . , Hkk[θ]) of size
O(k2k+tn2).

PROOF. We first show that if t = 0 (θ has no transversals), then there exists a small
OBDD that computes Hk[θ].

Let Gθ be the following undirected graph. The nodes are the variables V ar(Hk), and
the edges are pairs of variables (Z, Z′) such that ZZ′ is a 2-prime implicant in Hk�[θ]
for some �. Since θ has no transversals, all nodes R(i) are disconnected from all nodes
T (j). In particular, there exists a partition V ar(Hk) = Z′ ∪ Z′′ such that all R(i)’s are
in Z′, all T (j)’s are in Z′′, and every Hk�[θ] can written as ϕ′

� ∨ ϕ′′
� , where V ar(ϕ′

�) ⊂ Z′
and V ar(ϕ′′

�) ⊂ Z′′; in particular, ϕ′′
0 = ϕ′

k = 0.
Define row-major order of the variables in the set
V ar(Hk) − {T(1), . . . , T (n)} by

R(1), S1(1, 1), . . . , Sk(1, 1), S1(1, 2), . . . , Sk(1, n),
R(2), S1(2, 1), . . . , Sk(2, 1), S1(2, 2), . . . , Sk(2, n),

. . .

R(n), S1(n, 1), . . . , Sk(n, 1), S1(n, 2), . . . , Sk(n, n).

Let π ′ be the restriction of the row-major order to the variables in Z′. Similarly, let
π ′′ be the restriction to Z′′ of the corresponding column-major order of the variables

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:36 P. Beame et al.

that omits the R(i)’s and places the T (j) before all variables S�(i, j). We build a multi-
output OBDD using the order π = (π ′, π ′′) for (Hk0, . . . , Hkk). In the first part using
order π ′, it will compute each ϕ′

� term in parallel in width O(2k) and in the second part
it will continue by including the additional terms from ϕ′′

� using order π ′′. Observe that,
except for the R(i)S1(i, j) terms, each of the variables in the 2-prime implicants in ϕ′

�

appear consecutively in π ′. Each level of the OBDD will have at most 2k+3 nodes, one
for each tuple consisting of a vector of values of the partially computed values for the
k+1 functions ϕ′

�, remembered value of R(i), and remembered value of the immediately
preceding queried variable. In the part using order π ′′, the remembered value of T (j)
is used instead of the remembered value of R(i). The size of F ′ is O(k2kn2) since there
are kn2 + 2n variables in total in V ar(Hk).

For general t, let I and J be the sets of rows and columns, respectively, of the
transversals (i, j) in θ . Since θ has at most t independent transversals, the smaller of I
and J has size at most t. Suppose that this smaller set is I; the case when J is smaller
is analogous. In this case, every transversal (i, j) of θ has i ∈ I. Notice that if we set
all R(i) variables with i ∈ I in an assignment θ ′, then the assignment θ ∪ θ ′ has no
transversals, and, thus, by the above construction, Hk[θ ′] can be computed efficiently
by a multi-output OBDD. Therefore, construct the FBDD that first exhaustively tests
all possible settings of these at most t variables in a complete tree of depth t, then at
each leaf node of the tree, attaches the OBDD constructed above.

A nice property of a single transversal for θ is that its existence ensures that each Hk�

is a non-trivial function of its remaining inputs; more transversals will in fact ensure
that less about each Hk� disappears. We will see the following: If there are at least some
small number of independent transversals for θ (three suffice), then we can use the
fact that f depends on all inputs to ensure that �[θ] = f (Hk)[θ] will be transparent
provided one additional condition holds: There is no variable that we can set to kill off
all transversals in θ at once.

If we did not have this additional condition, then the construction of F ′ for Hk would
be simple: We would just use Lemma 6.4 at all nodes v of F at which all assignments
θ for which �v = �[θ] do not have enough transversals to ensure transparency of �v.

Failure of the additional condition is somewhat reminiscent of the situation with
setting units in Section 5: This failure means that there is some variable we can set
to kill off all transversals in θ at once, which by Lemma 6.4 means that along the
branch corresponding to that setting one can get an easy computation of Hk (not quite
as simple as fixing the value of the formula to 1 by setting units as in Section 5 but
still easy). It is not hard to see, and implied by the proposition below, which is easy to
verify, that the only way to kill off multiple independent transversals at once is to set
such a variable to 1. By analogy we call such variables Hk-units.

PROPOSITION 6.5. Let � = �[θ] for some θ with t independent transversals and
θ ′ = θ ∪ {W = b} for b ∈ {0, 1}. The number of independent transversals in θ ′ is in
{t − 1, t} if b = 0 and is in {0, t − 1, t} if b = 1.

Definition 6.6. We say that a variable Z is an Hk-unit for the formula � if �[Z = 1]
is transversal free but � is not. We let Uk(�) denote the set of Hk-units of �, and we
say that � is Hk-unit-free if Uk(�) = ∅.

The following lemma makes our intuitive claim precise; the proof of Lemma 6.7
appears in the appendix.

LEMMA 6.7. Let � = f (Hk) where f depends on all its inputs. Suppose that there exists
a θ with at least three independent transversals such that �[θ] = �. If � is Hk-unit-free,
then � is transparent.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:37

We still need to deal with the situation when � has any Hk-units along with multiple
independent transversals. Our strategy is simple: Whenever we encounter an edge in
F on which an Hk-unit is created (possibly more than one at once) and the resulting
formula has sufficiently many transversals, then, just as with the unit rule, we imme-
diately test these Hk-units, one at a time, each one after the previous one has been set
to 0 (since the branch where it is set to 1 has an easy computation remaining).

In order to analyze this strategy properly, it is useful to understand how Hk-units
can arise. Observe, that if � = �[θ] and Z is a unit for some Hk�[θ], for 0 ≤ � ≤ k, then
Z is an Hk-unit for �[θ], because by setting Z = 1 we ensure that Hk�[θ ∪ {Z = 1}] = 1,
wiping out all transversals. The following lemma shows a converse of this statement
under the assumption that θ has at least four independent transversals.

LEMMA 6.8. Let � = f (Hk) where f depends on all its inputs. If � = �[θ] for some
partial assignment θ that has at least four independent transversals, then Uk(�) =⋃

�∈{0,...,k} U (Hk�[θ]).

Since a transversal (i, j) requires that all elements of Hk have 2-prime implicants
rather than units on the terms involving (i, j), Lemma 6.8 immediately implies the
following:

COROLLARY 6.9. If � = �[θ] for some partial assignment θ , then no Hk-unit of � is in
the prime implicants indexed by any transversal of θ .

Since the formulas in Hk are monotone, by Lemma 6.8 and Proposition 5.20, units are
created by setting a variable to 1. Hence, if � has at least four independent transversals,
then setting all Hk-units in � to 0 in turn yields a formula that still has at least four
independent transversals (by Corollary 6.9) and is Hk-unit-free (by Lemma 6.8) and
hence transparent (by Lemma 6.7 and Proposition 5.20).

We now describe the procedure for building a multi-output FBDD F ′ computing Hk:
Start with the FBDD F for � and let V and E be, respectively, the vertices and edges
of F . Let V4 ⊆ V be the set of nodes v ∈ V such that �v = �[θ] for some assignment θ
that has at least four independent transversals. By Proposition 6.5, V4 is closed under
predecessors (ancestors) in F ; let E4 be the set of edges in F whose endpoints are both
in V4. The following is immediate from Proposition 6.5 and the definition of V4.

PROPOSITION 6.10. If v ∈ V4 but some child of v is not in V4, then either or both of the
following hold: (i) there is an assignment θ with precisely four independent transversals
such that �v = �[θ] or (ii) the variable Z tested at v is in Uk(�v) and the 0-child of v is
in V4.

We apply a similar construction to that of Section 5.2 to the subgraph of F on V4. For
e = (u, v), define Uk(e) = Uk(�v) − Uk(�u) to be the set of new Hk-units created along
edge e. There are two differences from the argument in Section 5.2: (1) we only apply
the construction to edges in E4 and build the rest of F ′ independently of F and (2) unlike
setting ordinary units to 1, in which the corresponding FBDD edges simply point to
the 1-sink, each setting of an Hk-unit to 1 only guarantees that the resulting formula
is transversal free; moreover the transversal-free formulas resulting from different
settings may differ. The details are as follows (see Figure 8).

—For every e = (u, v) ∈ E4 such that Uk(e) is non-empty (and, hence, the 0-child of u is
also in V4), add new vertices (e, 1), . . . , (e, |Uk(e)|) and replace e with a path from u to
v having the new vertices in order as internal vertices.

—Edge (u, (e, 1)) in F ′ will have label 1, which is the label that e has in F ; denote the
variable tested at u by W .

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:38 P. Beame et al.

Fig. 8. Given an FBDD F for � = f (Hk) in (a), apply the conversion to produce F ′ for Hk as in (b), with
detail for unit propagation in (c) in case that setting W = 1 produces new Hk-units.

—The variable labeling each new vertex (e, i) will be the ith element of Uk(e) under
some fixed ordering of variables; we denote this variable by Ze,i.

—The 0-edge out of each new vertex (e, i) will lead to the next vertex on the newly
created path. However, unlike the simple situation with ordinary units, the 1-edge
from each new vertex (e, i) will lead to a distinct new node (u, i) of F ′. Since (u, v) ∈
E4, there is some partial assignment θ such that �u = �[θ], �v = �[θ, W = 1],
and θ ∪ {W = 1} has at least four transversals; for definiteness, we will pick the
lexicographically first such assignment. Define the partial assignment

θ (u, i) = θ ∪ {W = 1} ∪ {Uk(�u) = 0}
∪ {Ze,1 = 0, . . . , Ze,i−1 = 0, Ze,i = 1}

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:39

to be the assignment that sets all Hk-units in �u to 0 along with the first i − 1 of the
Hk-units created by setting W to 1. The sub-DAG of F ′ rooted at (u, i) will be the size
O(k2kn2) FBDD for Hk[θ (u, i)] constructed in Lemma 6.4.

—For any node w ∈ V4, whose 0-child is in V4, such that w is labeled by a variable
W that was an Hk-unit of �v for some ancestor v of w, convert w to a no-op node
pointing to its 0-child; that is, remove its variable label and its 1-outedge and retain
its 0-outedge with its labeling removed.

—For any node v ∈ V4 with a child that is not in V4 and to which the previous
condition did not apply, let θ be a partial assignment such that �v = �[θ] and θ has
precisely four independent transversals, as guaranteed by Proposition 6.10, make
v the root of the size O(k2kn2) FBDD for Hk[θ ′] constructed in Lemma 6.4 where
θ ′ = θ ∪ {Uk(�v) = 0}.

—All other labeled edges of F between nodes of E4 are included in F ′.

The fact that this is well-defined follows similarly to Proposition 5.21.

LEMMA 6.11. F ′ as constructed above is a multi-output FBDD computing Hk that has
size at most O(k2kn3) times the size of F .

PROOF. We first analyze the size of F ′: As in the analysis for computing Hk, some
nodes u have one added unit-setting path of length at most n and each node on the
path of at the extremities of V4 has a new added FBDD of size O(k2kn2), yielding only
O(k2kn3) new nodes per node of F . Also, the fact that F ′ is an FBDD follows similarly
to the proof in Lemma 5.23.

If �v is the function computed in F at node v for all v ∈ V4, then we show by
induction that for every partial assignment θ ′ reaching v in F ′, �[θ ′] = �v[Uk(�v) = 0]
and θ ′ = θ ∪ {Uk(�v) = 0} for some partial assignment θ such that �v = �[θ]. It is
trivially true of the root. The argument is similar to that for Lemma 5.23.

We now see why this is enough. Since v ∈ V4, �v[Uk(�v) = 0] is Hk-unit free and
has at least four transversals, and so it is transparent by Lemma 6.7. It remains
to observe that (i) each multi-output FBDD attached directly to any node v ∈ V4
used a restriction θ of � that would lead to that node in F ′, which, because �[θ]
is transparent, implies that its leaves correctly compute the values of Hk, and (ii)
the same holds for the restriction leading to node (u, i) with parent (e, i), namely, the
restriction used to build the multi-output FBDD consists of a restriction θ that in
F ′ would reach node u ∈ V4 and for which �[θ] is transparent, together with the
assignment {W = 1} ∪ {Ze,1 = 0, . . . , Ze,i−1 = 0, Ze,i = 1}, which follows the unique path
from u to (u, i). Again, this implies that its leaves correctly compute the values of Hk.

Now it remains to proof Lemmas 6.7 and 6.8. All formulas in Hk are 2-DNF formulas
and, for every (i, j) ∈ [n]2, each has a unique 2-prime implicant P�,i, j indexed by (i, j),
where P0,i, j = R(i)S1(i, j), Pk,i, j = Sk(i, j)T (j), and P�,i, j = S�(i, j)S�+1(i, j) for � ∈ [k−1].
We say that two of their 2-prime implicants, one from Hk� and one from Hk(�+1), are
neighbors if they share a variable and hence have the same index (i, j). Observe that
each prime implicant in Hk� has two neighbors if � ∈ [k−1] and one neighbor if � ∈ {0, k}.

The key technical lemma is the following:

LEMMA 6.12. Let � = f (Hk) for some function f that depends on all its inputs.
Suppose θ is a partial assignment with two independent transversals (i0, j0) and (i1, j1).
Suppose that for some (i, j) independent of of both transversals, the neighboring prime
implicants of the prime implicant, P�,i, j , of Hk� are either unassigned or set to 0 by
θ . Then there exists a partial assignment μ to all the variables of V ar(�[θ]), except
those in P�,i, j , and to all variables of the transversals, (i0, j0) and (i1, j1), such that

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:40 P. Beame et al.

�[θ ∪ μ] = f�(P�,i, j[θ]). Moreover, the choice of μ depends on �[θ] (as well as the indices
�, i, i0, i1, j, j0, j1) but not on any other aspect of θ .

The lemma still holds when we merely assume that the three pairs of indices are
distinct; however, we do not allow it here since it would complicate the proof without
any advantage with respect to our applications of it.

PROOF. Recall that since f depends on all its inputs, for every � there exists an
assignment μ� : X − {X�} → {0, 1}, such that f�(X�) = f [μ�] is a function that depends
on X�: that is, f�(X) = X� or f�(X) = ¬X�.

We define assignment μ so it sets the remaining variables to force Hkm to equal
μ�(Xm) for all m
= � and force Hk� to equal P�,i, j[θ]. In order to force some Hkm to 1 μ
may need to set two variables to 1 that may appear in neighboring prime implicants.
In order to avoid incidentally forcing any of those neighboring prime implicants to 1,
when forcing the Hkm to 1, we use the variables in the two transversals alternately. We
now give the formal details.

Let Ones� = {m | μ�(Xm) = 1} and order the elements of Ones� as m1 < m2 < · · · ,
and define Onesb

� = {mr | b = r mod 2} for b ∈ {0, 1}. For b ∈ {0, 1}, define μ to set the
variables of the (ib, jb) prime implicant of Hkm to 1 for every m ∈ Onesb

� . This will force
Hkm[θ ∪ μ] = 1 for all m ∈ Ones�. Let μ set all other variables in the transversals (i0, j0)
and (i1, k1) as well as all variables of �[θ], except for those in P�,i, j , to 0. In particular,
the alternation between how the 1’s are forced in the definition of μ ensures that for
b ∈ {0, 1}, if the (ib, jb) prime implicant of Hkm is set to 1 by μ, then its neighboring
prime implicants are forced to 0 by μ. In fact, Hkm[θ ∪ μ] = 0 for all m /∈ Ones� ∪ {�}
since each neighboring prime implicant to P�,i, j[θ] will have one variable set as in θ
and the other set to 0 and all other prime implicants are either set to 0 by θ or by μ.
Finally, the same property is true of every prime implicant of Hk� except for P�,i, j[θ]. It
remains to observe that �[θ ∪ μ] = f (Hk[θ ∪ μ]) = f [μ�](P�,i, j[θ]) = f�(P�,i, j[θ]) and μ
only depended on θ through the value of �[θ], as required.

Notice that the lemma fails if θ has only 1 transversal:

Example 6.13. For a counterexample, consider f (X0, X1, X2) = X0 X2 ∨ X1. Suppose
that θ sets all variables in Z to 0, except for the variables with indices (i, j) = (3, 7),
which remain unset:

R(3), S1(3, 7), S2(3, 7), T (7).

Thus, θ , has the transversal (3, 7). However, �[θ] is

f (H30[θ], H31[θ], H32[θ], H33[θ])
= f (R(3)S1(3, 7), S1(3, 7)S2(3, 7), S2(3, 7)T (7))
= R(3)S1(3, 7)S2(3, 7)T (7) ∨ S1(3, 7)S2(3, 7)
= S1(3, 7)S2(3, 7),

and hence it does not depend on R(3) or T (7).

We immediately obtain the following two corollaries:

COROLLARY 6.14. If θ has at least 3 distinct transversals, then all variables in its
transversals are in V ar(�[θ]).

PROOF. This follows immediately since if (i, j) is a transversal, then all P�,i, j[θ] are
2-prime implicants in their respective Hk�[θ].

COROLLARY 6.15. If θ has at least 3 independent transversals, then every partial
assignment θ ′ such that �[θ] = �[θ ′] has the same set of transversals as θ .

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:41

PROOF. We prove that every transversal of θ is a transversal of θ ′: This implies that
θ ′ has at least three independent transversals, and therefore the converse holds, too
(every transversal of θ ′ is a transversal of θ). Let � = �[θ] = �[θ ′]. Let (i, j) be a
transversal for θ . Since θ has at least three transversals, by Corollary 6.14, � depends
on all variables of the transversal (i, j). It follows that θ ′ cannot set any of these
variables. For � ∈ [k−1], the 2-prime implicants within each Hk� are disjoint from each
other and, hence, if the variables are unset, then each such 2-prime implicant remains.
Thus, for each � ∈ [k − 1] the Boolean function Hk�[θ ′] contains the 2-prime implicant
S�(i, j)S�+1(i, j).

It remains to prove that Hk0[θ ′] and Hkk[θ ′] each contain the 2-prime implicants on
(i, j), R(i)S1(i, j), or Sk(i, j)T (j), which are unset by θ ′. To show this, we must rule out
R(i) or T (j) absorbing them. We do this for R(i); the case for T (j) is analogous. Suppose,
to the contrary, that Hk0[θ ′ ∪ {R(i) = 1}] = 1. If this is the case, then �[θ ′ ∪ {R(i) = 1}] =
�[R(i) = 1] does not depend on any of the R variables. However, since θ has (i, j) as
a transversal as well as, in particular, another (independent) transversal (i′, j ′) with
i′
= i, Hk0[θ] contains R(i)S1(i, j) and R(i′)S1(i′, j ′) as 2-prime implicants. It follows
that Hk0[θ ∪ {R(i) = 1}] depends on R(i′) and hence �[θ ∪ {R(i) = 1}] = �[R(i) = 1]
depends on R(i′), contradicting our earlier derivation that it did not depend on any R
variables.

Thus, for k ≥ 3, the property of having k-independent transversals is a property of
the subformula and not of an assignment, and for the rest of the section we will say
that a restriction � of � has k-independent transversals if there exists an assignment
θ so � = �[θ] and θ has k independent transversals; by the above, this is equivalent to
saying that all θ with � = �[θ] have k-independent transversals.

Proof of Lemma 6.7

We use the above to prove our lemma that are formulas are transparent if they are
unit free and have sufficiently many independent transversals.

PROOF OF LEMMA 6.7. Suppose the contrary: Then there exist two partial assignments
θ, θ ′ such that � = �[θ] = �[θ ′] and � has at least three independent traversals, but
for some �, Hk�[θ]
= Hk�[θ ′]. Observe that if any Hk�[θ] or Hk�[θ ′] were the constant 1,
then � would be transversal free, contradicting the fact that it has three independent
traversals. Also observe that if any Hk�[θ] or Hk�[θ ′] contained a 1-prime-implicant (unit)
Z, then setting Z = 1 would set the corresponding Hk� to 1, which would eliminate all
of its transversals, contradicting the assumption that � is Hk-unit free. Therefore, all
prime implicants of Hk�[θ] and Hk�[θ ′] are 2-prime implicants. Since all prime implicants
in Hk�[θ] and Hk�[θ ′] are 2-prime implicants, Lemma 6.12 implies that all variables of
all prime implicants are in V ar(�).

Assume without loss of generality that P�,i, j is a 2-prime implicant of Hk�[θ] that is
not a prime implicant of Hk�[θ ′]; that is, P�,i, j[θ] = P�,i, j but P�,i, j[θ ′] = 0. Let (i0, j0)
and (i1, j1) be two independent transversals for θ (which are also transversals for θ ′ by
Corollary 6.15) that are also independent of (i, j). Since in both θ and θ ′ the neighboring
implicants of P�,i, j either remain as 2-prime implicants or are set to 0 in θ and θ ′ (though
not necessarily the same in both), we can apply Lemma 6.12 to both θ and θ ′ to obtain
μ and μ′. By the conclusion of Lemma 6.12, �[μ] = �[θ ∪ μ] = f�(P�,i, j) which is either
P�,i, j or ¬P�,i, j but �[μ′] = �[θ ′ ∪μ′] = f�(0), which is neither of the two. However, since
the assignments μ and μ′ depended only on the indices involved and �, we conclude
that μ = μ′ which is a contradiction.

The requirement that � be unit free is necessary for Lemma 6.7 to hold: A simple
example is given by the formula �′ = S1(3, 7) in Example 6.2, which is not transparent.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:42 P. Beame et al.

The formula remains non-transparent even if we expand it with three independent
transversals, for example, S1(3, 7) ∨ [R(4)S1(4, 4) ∨ . . . ∨ S3(4, 4)T (4)] ∨ [R(5)S1(5, 5) ∨
. . .] ∨ [R(6)S1(6, 6) ∨ . . .], for the same reasons given in the example.

Proof of Lemma 6.8

Finally, we use the above properties to prove our characterization of Hk-units in case
there are sufficiently many independent transversals.

PROOF OF LEMMA 6.8. If Z ∈ U (Hk�[θ]) for some �. then, by definition, Hk�[θ∪{Z = 1}] =
1, and therefore �[θ∪{Z = 1}] = �({Z = 1}) is transversal free; it follows that Z ∈ Uk(�).

Conversely, suppose that Z /∈ ⋃
�∈{0,...,k} U (Hk�[θ]). In particular, none of the (mono-

tone) formulas Hk�[θ ∪{Z = 1}] is the constant 1. The assignment Z = 1 can eliminate at
most one of the ≥4 independent transversals in θ , so θ ∪ {Z = 1} has at least three (in-
dependent) transversals. Therefore, by Corollary 6.15, every partial assignment θ ′ such
that �[θ ′] = �[Z = 1] = �[θ ∪ {Z = 1}] has at least three independent transversals.
This implies that �[Z = 1] is not transversal-free and hence Z /∈ Uk(�).

7. A DICHOTOMY THEOREM FOR EFFICIENT PROPOSITIONAL MODEL COUNTING

In this section, we present the proof of Theorem 3.12 that provides a characterization
for a restricted class of queries for the existence of efficient (current) model counting
algorithms on the propositional formulas. For this class, either all DLDDs require
exponential size (therefore all modern model counting algorithms take exponential
time), or we can construct a poly-size FBDD in polynomial time (data complexity),
leading to a polynomial-time model counting algorithm.

The first part of Theorem 3.12 extends Theorem 3.9, where f (X) = g(X, 1).

Example 7.1. We illustrate with three examples as follows:

—g = (X0 ∨ B2) ∧ (B0 ∨ X1), where k = 1. Then g(X, 1) = 1: It does not depend on X0, X1,
and, therefore, the lineage has a poly-size FBDD.

—g = X0 ∧ (X1 ∨ B3) ∧ (X1 ∨ B5) ∧ (X2 ∨ X3 ∨ X4 ∨ X5), where k = 5. Then g(X, 1) =
X0 ∧ (X2 ∨ X3 ∨ X4 ∨ X5): It does not depend on X1, and the lineage has a poly-size
FBDD.11

—g = (X0 ∨ X1) ∧ (X1 ∨ B3) ∧ (X2 ∨ X3), where k = 3. Then g(X, 1) = (X0 ∨ X1) ∧ (X2 ∨
X3): It depends on all of X0, . . . , X3, and therefore every DLDD for the lineage has
exponential size.

Jha and Suciu [2013] gave a sufficient condition under which a UCQ is guaranteed to
have a polynomial size FBDD. Our result here is novel in that it represents a necessary
and sufficient condition, albeit for a very restricted fragment of UCQ.

Next we prove Theorem 3.12.

PROOF.

Proof of (1)

Suppose f (X0, . . . , Xk) = g(X, 1)= g(X0, . . . , Xk, 1, . . . , 1) depends on all variables
X0, . . . , Xk. Let F be an FBDD for the query Q = g(hk0, . . . , hkk, b0, . . . , bk+1), over the do-
main of size n′ = n + 2. We will convert F to an FBDD F ′ for query Q′ = f (hk0, . . . , hkk)
over the domain of size n; further, F and F ′ will have the same size. By Theorem 3.9,
the size of F ′ is 2�(n); therefore the size of F ′ is 2�(n) = 2�(n′).

11This is QV in Jha and Suciu [2013] for which a poly-size FBDD was shown.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:43

To convert F to F ′, modify F by setting the following values,12 where n1 = n+ 1 and
n2 = n + 2:

R(n1) = 1, R(n2) = 0
S�(n2, n2) = 1 if � is odd
S�(n1, n1) = 1 if � is even

S�(i, j) = 0 ∀� ∈ [k]
∀ other (i, j) ∈ {n1, n2} × {n1, n2}

T (n1) = 1, T (n2) = 0 if k is odd
T (n2) = 1, T (n1) = 0 if k is even.

Note that the modified FBDD F ′ computes the query Q′ = f (hk0, . . . , hkk) over a domain
of size n: All queries b0, . . . , bk+1 become true under the partial assignment above,
while the lineages for hk0, . . . , hkk over domain n′ = n+2 becomes their lineage over the
domain of size n.

Proof of (2)

For the converse, assume that f (X0, . . . , Xk) = g(X0, . . . , Xk, 1, . . . , 1) does not depend
on Xs. Denote Q′ = f (hk0, . . . , hkk): Its lineage is transversal-free (Definition 6.3) and
therefore it has a shared OBDD Fs of size O(n) for formulas hk0, . . . , hkk (see the proof
of Proposition 6.4, which constructs the FBDD in poly-time for a fixed k).

Further, if for any �, b� = 0, then both h�−1 = h� = 0, hence the lineage of
the residual formula f (X0, . . . , Xk) is transversal free. Therefore, the residual for-
mula has a shared OBDDF0,� of size O(n) for hk0, . . . , hkk obtained by traversing the
variables R(i), S1(i, j), . . . , S�−1(i, j) in row-major order and traversing the variables
S�+1(i, j), . . . , T (j) in column-major order.

We now describe the FBDD F for Q = g(hk0, . . . , hkk, b0, . . . , bk+1), which will have
k + 3 layers: 0 to k + 2. (1) Layers 0 to k + 1 of F will have a tree structure; the k + 2
queries b0, . . . , bk+1 are tested in these layers one after one. (As an optimization, the
FBDD only needs to test those queries on which the function F depends.) (2) In the
k + 2th layer, there will be copies of FBDDs Fs or F0,�, � ∈ [k] described above.

The layers of F are described below:

Layer 0: Test b0. Test the variables R(1), R(2), . . . , R(n) in an arbitrary order: For
each node R(i), its 0-child is R(i + 1) and its 1-child is a root of a unique subtree at
the next layer. The 0-child of the last node R(n) is also leads to a unique subtree at
the next layer. The total number of edges to the next layer is n + 1.
Layer �, 1 ≤ � ≤ k: Test for b�. Each sub-tree in the layer � tests the variables
S�(1, 1), . . . , S�(n, n) in an arbitrary order (e.g., row-major): For each node S�(i, j)
its 0-child is the next variable in this order, and each 1-child is a root of a unique
subtree at the next layer. The 0-child of the last node in this order is also a unique
subtree at the next layer. The total number of edges from each of these subtrees to
the next layer is n2 + 1.
Layer k + 1: Test for bk+1. Test the variables T (1), . . . , T (n) in an arbitrary order:
The 0-child of T (i) is T (i + 1). All 1-children plus the 0-child of the last node points
to a unique FBDD (Fs or F0,� for some �in[k]) in the last layer.

12This means the following: Replace a node testing one of the variables Z mentioned above by a no-op node,
whose unique child is either the 0-child or the 1-child of Z, according to the assignment.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

1:44 P. Beame et al.

Before we describe the last k + 2-th layer, we note that each of the outputs from the
k + 1-th layer encode two pieces of information: (i) the values of all queries b0, . . . , bk,
that is, for each of them we know if it is 0 or 1, and (ii) we know which variables have
been tested. In the FBDDs Fs or F0,�s in the last layer, we set the values of these
variables according to the test earlier (replace the variable by a no-op node having a
unique child based on its 0- or 1-value) to ensure that every variable is tested at most
once in F (as is the case with the first k + 2 layers).

Layer k + 2: Shared FBDDs for hk0, . . . , hkk. Consider any edge to layer k + 2 from
layer k + 1. (1) If for any �, b� = 0, then both query�−1 = h� = 0. Consider the least
� such that h� = 0 and connect this edge to the shared FBDD F0,� substituting the
values of the variables that have already been tested.
(2) If for all �, b� = 1, then connect the edge to the shared FBDD Fs substituting
the values of the variables that have already been tested.

Computing the function g(h0, . . . , hk, b0, . . . , bk+1). Now at the sinks of the FBDD F
(sinks of the FBDDs in k+2-th layer), we know the values of the lineages for all queries
b0, . . . , bk+1 (from 0 to k+1-th layers) as well as for the queries h0, . . . , hk (from the k+2-
th layer). Therefore, the value of the lineage of the query Q = g(h0, . . . , hk, b0, . . . , bk+1
can be easily computed.

The total number of nodes in the FBDD F is O(n) × [O(n2)]k × O(n) × O(n) = nO(1).
The completes the proof of part (2) of the theorem.

8. DISCUSSION

We have proved that decision-DNNFs and their generalization DLDDs can be efficiently
converted into equivalent FBDDs that are at most quasipolynomially larger. As a
consequence, known lower bounds for FBDDs imply lower bounds for decision-DNNFs
and thus (a) exponential separations of the representational power of decision-DNNFs
from that of both d-DNNFs and AND-FBDDs and (b) lower bounds on the running
time of any algorithm that, either explicitly or implicitly, produces a decision-DNNF,
including the current generation of exact model counting algorithms. Further, using
these lower bounds, we proved exponential separations between lifted model counting
using extensional query evaluation and state-of-the-art propositional methods for exact
model counting. Our results were obtained by proving exponential lower bounds on the
sizes of the decision-DNNF representations even for queries that can be evaluated in
polynomial time.

Some natural questions arise as follows: Is there some other, more powerful, syntac-
tic subclass of d-DNNFs that is useful for exact model counting? On the other hand,
are there model-counting algorithms using DLDDs that are more efficient than exact
model-counting using decision-DNNFs? In light of our lower bounds for probabilistic
databases, it would be interesting to prove a dichotomy, classifying queries into those
for which any decision-DNNF-based model counting algorithm takes exponential time
and those for which such algorithms run in polynomial time. In this article, we showed
such a dichotomy for a very restricted class of queries. A dichotomy for general model
counting is known for the broader query class UCQ [Dalvi and Suciu 2012] that clas-
sifies queries as either #P-hard or solvable in polynomial time. Our separation results
show that this same dichotomy does not extend to decision-DNNF-based algorithms;
is there some other general dichotomy that can be shown for this class of algorithms?
Finally, we entirely focused on exact model counting, whereas one can explore the lim-
its of approximate model counting [Gomes et al. 2009], in general, and with respect to
query evaluation in probabilistic databases.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

Exact Model Counting of Query Expressions: Limitations of Propositional Methods 1:45

REFERENCES

2014. The SDD Package: Version 1.1.1. Retrieved January 31, 2014, from http://reasoning.cs.ucla.edu/sdd/.
Sheldon B. Akers. 1978. Binary decision diagrams. IEEE Trans. Comput. 27, 6 (1978), 509–516.
Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. 2003. Algorithms and complexity results for #SAT

and Bayesian inference. In FOCS. 340–351.
Roberto J. Bayardo, Jr., and J. D. Pehoushek. 2000. Counting models using connected components. In AAAI.

157–162.
Paul Beame, Russell Impagliazzo, Toniann Pitassi, and Nathan Segerlind. 2010. Formula caching in DPLL.

ACM Trans. Comput. Theory 1, 3 (2010).
Paul Beame, Henry A. Kautz, and Ashish Sabharwal. 2004. Towards understanding and harnessing the

potential of clause learning. J. Artif. Intell. Res. 22 (2004), 319–351.
Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. 2013. Lower bounds for exact model counting and

applications in probabilistic databases. In UAI.
Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. 2014. Counting of query expressions: Limitations of

propositional methods. In ICDT. 177–188.
Paul Beame and Vincent Liew. 2015. New limits for knowledge compilation and applications to exact model

counting. In UAI. 131–140.
Paul Beame, Guy Van den Broeck, Eric Gribkoff, and Dan Suciu. 2015. Symmetric weighted first-order model

counting. In PODS. 313–328.
Eli Ben-Sasson and Avi Wigderson. 2001. Short proofs are narrow—Resolution made simple. J. ACM 48, 2

(Mar. 2001), 149–169.
Beate Bollig and Ingo Wegener. 1998. A very simple function that requires exponential size read-once

branching programs. Inf. Process. Lett. 66, 2 (April 1998), 53–57.
Randal E. Bryant. 1986. Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput.

35, 8 (1986), 677–691.
Nilesh N. Dalvi and Dan Suciu. 2012. The dichotomy of probabilistic inference for unions of conjunctive

queries. J. ACM 59, 6 (2012), 30.
Adnan Darwiche. 2001a. Decomposable negation normal form. J. ACM 48, 4 (2001), 608–647.
Adnan Darwiche. 2001b. On the tractable counting of theory models and its application to truth maintenance

and belief revision. J. Appl. Non-Class. Logic. 11, 1–2 (2001), 11–34.
Adnan Darwiche. 2011. SDD: A new canonical representation of propositional knowledge bases. In IJCAI

2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence. 819–826.
Adnan Darwiche and Pierre Marquis. 2002. A knowledge compilation map. J. Artif. Int. Res. 17, 1 (Sept.

2002), 229–264.
Martin Davis, George Logemann, and Donald Loveland. 1962. A machine program for theorem-proving.

Commun. ACM 5, 7 (1962), 394–397.
Martin Davis and Hilary Putnam. 1960. A computing procedure for quantification theory. J. ACM 7, 3 (1960),

201–215.
Pedro Domingos and Daniel Lowd. 2009. Markov Logic: An Interface Layer for Artificial Intelligence.
Carla P. Gomes, Ashish Sabharwal, and Bart Selman. 2009. Model counting. In Handbook of Satisfiability.

IOS Press, 633–654.
Eric Gribkoff and Dan Suciu. 2016. SlimShot: In-database probabilistic inference for knowledge bases. Proc.

VLDB 9, 7 (2016), 552–563.
Jinbo Huang and Adnan Darwiche. 2005. DPLL with a trace: From SAT to knowledge compilation. In IJCAI.

156–162.
Jinbo Huang and Adnan Darwiche. 2007. The language of search. J. Artif. Intell. Res. 29 (2007), 191–219.
Manfred Jaeger and Guy Van den Broeck. 2012. Liftability of probabilistic inference: Upper and lower

bounds. In Proceedings of the 2nd International Workshop on Statistical Relational AI.
Abhay Kumar Jha and Dan Suciu. 2011. Knowledge compilation meets database theory: Compiling queries

to decision diagrams. In ICDT. 162–173.
Abhay Kumar Jha and Dan Suciu. 2013. Knowledge compilation meets database theory: Compiling queries

to decision diagrams. Theory Comput. Syst. 52, 3 (2013), 403–440.
Stephen M. Majercik and Michael L. Littman. 1998. Using caching to solve larger probabilistic planning

problems. In AAAI. 954–959.
William Joseph Masek. 1976. A Fast Algorithm for the String Editing Problem and Decision Graph Com-

plexity. Master’s thesis, MIT.

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

http://reasoning.cs.ucla.edu/sdd/

1:46 P. Beame et al.

Christian Muise, Sheila A. McIlraith, J. Christopher Beck, and Eric I. Hsu. 2012. Dsharp: Fast d-DNNF
compilation with sharpSAT. In Canadian AI. 356–361.

Igor Razgon. 2016. On the read-once property of branching programs and CNFs of bounded treewidth.
Algorithmica 75, 2 (2016), 277–294.

Ashish Sabharwal. 2009. SymChaff: Exploiting symmetry in a structure-aware satisfiability solver. Con-
straints 14, 4 (2009), 478–505.

Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann Pitassi. 2004. Combining component
caching and clause learning for effective model counting. In SAT.

Richard P. Stanley. 1997. Enumerative Combinatorics. Cambridge University Press.
Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic Databases. Morgan &

Claypool.
Marc Thurley. 2006. sharpSAT: Counting models with advanced component caching and implicit BCP. In

SAT. 424–429.
Leslie G. Valiant. 1979. The complexity of enumeration and reliability problems. SIAM J. Comput. 8, 3

(1979), 410–421.
Guy Van den Broeck. 2011. On the completeness of first-order knowledge compilation for lifted probabilistic

inference. In Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural
Information Processing Systems 2011. 1386–1394.

Guy Van den Broeck, Wannes Meert, and Adnan Darwiche. 2014. Skolemization for weighted first-order
model counting. In KR.

Ingo Wegener. 2000. Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM,
Philadelphia, PA.

Received February 2015; revised May 2016; accepted August 2016

ACM Transactions on Database Systems, Vol. 42, No. 1, Article 1, Publication date: February 2017.

